题解 抛硬币
题目描述
具体做法与心路历程
对于这种期望题可以直接设方程,然后递推。一般是不连续的带系数,连续的不带系数。
具体做法
设 f [ i ] f[i] f[i]表示连续 i i i次正面朝上的期望步数。
有 f [ i ] = f [ i − 1 ] + 1 + ( 1 − p ) × f [ i ] f[i]=f[i-1]+1+(1-p)\times f[i] f[i]=f[i−1]+1+(1−p)×f[i]。
化简得: f [ i ] = f [ i − 1 ] × 1 p + 1 p f[i]=f[i-1]\times\frac{1}{p}+\frac{1}{p} f[i]=f[i−1]×p1+p1。
通项公式为:设 i n v = 1 p , f [ n ] = 1 − i n v n + 1 1 − i n v − 1 inv=\frac{1}{p},f[n]=\frac{1-inv^{n+1}}{1-inv}-1 inv=p1,f[n]=1−inv1−invn+1−1.
C o d e \mathcal{Code} Code
ps:考试忘记求逆元了,爆0 。。。
/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月04日 星期一 14时24分45秒
*******************************/
#include<cstdio>
#include<algorithm>
#define int long long
using namespace std;
struct IO{
template<typename T>
IO & operator>>(T&res)
{
T q=1;char ch;
while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
res=(ch^48);
while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
res*=q;
return *this;
}
}cin;
const int mod=998244353;
const int Phi=mod-1;
int p,k,ans;
int ksm(int a,int b)
{
b%=Phi;
int res=1;
while(b)
{
if(b&1)
res=1ll*res*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return res;
}
signed main()
{
//freopen("coin.in","r",stdin);
//freopen("coin.out","w",stdout);
cin>>p>>k;
if(p==1){printf("%lld\n",k); return 0;}
p=ksm(p,mod-2);
ans=(1-ksm(p,k+1)+mod)%mod;
ans=1ll*ans*ksm(1-p+mod,mod-2)%mod;
ans=(ans-1+mod)%mod;
printf("%lld\n",ans);
return 0;
}