题解 Cheapest Palindrome
C S P − S CSP-S CSP−S考前倒数第二天,发现这种字符串 d p dp dp题总是不会往 d p dp dp方向想。
题目描述
见洛谷 P2890[USACO07OPEN]便宜的回文Cheapest Palindrome
具体做法与心路历程
这个题没有立马想出来是真的还需要加强了。看到题目我好像立马就想到了 m a n a c h e r manacher manacher,然后再是考虑对每个端点 d p dp dp,然后没想出来。
具体做法
区间 D P DP DP。
设 f l , r f_{l,r} fl,r表示把区间 [ l , r ] [l,r] [l,r]变成一个回文的字符串所需要的最小代价。
转移方程很好得出:
-
f l , r = f l + 1 , r + m i n ( c o s t [ s [ l ] ] [ 0 ] , c o s t [ s [ l ] ] [ 1 ] ) f_{l,r}=f_{l+1,r}+min(cost[s[l]][0],cost[s[l]][1]) fl,r=fl+1,r+min(cost[s[l]][0],cost[s[l]][1]),可以选择使已经是回文字符串的 [ l + 1 , r ] [l+1,r] [l+1,r]区间在删除 l l l处的字符或在 r + 1 r+1 r+1处加入 l l l处的字符使得区间 [ l , r ] [l,r] [l,r]回文。
-
f l , r = f l , r − 1 + m i n ( c o s t [ s [ r ] ] [ 0 ] , c o s t [ s [ r ] ] [ 1 ] ) f_{l,r}=f_{l,r-1}+min(cost[s[r]][0],cost[s[r]][1]) fl,r=fl,r−1+min(cost[s[r]][0],cost[s[r]][1]),同上。
-
f l , r = f l + 1 , r − 1 f_{l,r}=f_{l+1,r-1} fl,r=fl+1,r−1,如果 s [ l ] = = s [ r ] s[l]==s[r] s[l]==s[r],可以进行当前转移。
边界为 f i , i = 0 f_{i,i}=0 fi,i=0。
C o d e \mathcal{Code} Code
区间 d p dp dp果然还是写成递归最方便啊!
/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月14日 星期四 19时03分29秒
*******************************/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
struct IO{
template<typename T>
IO & operator>>(T&res)
{
T q=1;char ch;
while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
res=(ch^48);
while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
res*=q;
return *this;
}
}cin;
const int maxn=2003;
const int inf=1e8;
int n,m,w[27][2],f[maxn][maxn],k;
string s;
char c[5];
int dp(int i,int j)
{
if(f[i][j]!=-1) return f[i][j];
if(i>=j) return f[i][j]=0;
if(s[i]==s[j]) f[i][j]=dp(i+1,j-1);
if(f[i][j]==-1)f[i][j]=inf;
f[i][j]=min(f[i][j],min(dp(i+1,j)+min(w[s[i]-'a'][0],w[s[i]-'a'][1]),dp(i,j-1)+min(w[s[j]-'a'][0],w[s[j]-'a'][1])));
return f[i][j];
}
int main()
{
//freopen("p2890.in","r",stdin);
//freopen("p2890.out","w",stdout);
memset(f,-1,sizeof f);
cin>>n>>m;
s.resize(m+1);
scanf("%s",&s[1]);
for(int i=1;i<=n;i++)
{
scanf("%s",c);
k=c[0]-'a';
cin>>w[k][0]>>w[k][1];
}
printf("%d\n",dp(1,m));
return 0;
}