Gartner新兴技术雷达是一种可视化工具,用于支持企业技术组合并指导 IT 领导者规划 2025 年的颠覆性技术。它分为四个主题:直观优势、生产力助推器、人机关系和基础推动因素。
机会
-
决策智能平台和多功能工作机器人将有助于优化企业工作流程,提高复杂决策的交付速度,增强员工体验并支持减少人工干预。
-
智能机器人、机器客户和边缘生成人工智能(GenAI)将支持创建更智能的世界,使企业能够更加自主、高效地运营。
-
绿色软件工程和虚假信息安全将提供基础推动因素,支持企业安全驾驭数字化未来并加强风险管理。
-
工业元宇宙、架构人类和增强现实 (AR) 云将为员工和客户提供参与周围世界的全新体验。
建议
-
优先考虑Agentic AI 和空间计算等新兴技术,以降低成本、加速流程和提高质量。
-
实施将人力输入与机器流程相结合的系统,以增强自主性并提高运营洞察力。
-
投资或探索同态加密和6G等关键基础技术,以确保对新兴技术的投资受到保护和可持续性。
-
通过突破传统思维,探索并突破当前企业运营模式的界限。利用双向脑机接口或员工人工智能化身等技术。
需要知道什么
Gartner 的2025 年新兴技术采用雷达为IT 领导者提供了一个战略框架,用于评估新兴技术对企业技术投资重点的潜在影响(见图 1)。该采用雷达特别有助于企业识别有望带来重大商业价值或快速成果的技术,同时与企业的行业背景、风险承受能力和预算限制保持一致。
图 1:2025 年新兴技术采用雷达
更广泛地说,新兴技术雷达以直观的方式呈现技术或趋势,通常映射到同心圆区域以表明其成熟度、采用准备度或战略相关性。其可操作的见解可补充 Gartner 的其他战略研究。例如,Gartner 的新兴技术雷达应与2024 年新兴技术成熟度曲线协同工作。
新兴技术成熟度曲线关注技术从创新到主流的成熟度和采用时间表,而新兴技术采用雷达则提供了当前准备情况、影响力、实际适用性和相关性的快照。因此,成熟度曲线关注的是技术何时成熟,而技术雷达关注的是如何以及在何处应用它。两者共同帮助企业制定短期采用和长期投资战略。
同样,Gartner 的其他成果,例如《2025 年主要战略技术趋势》或《2024 年 11 月值得关注的技术:人机协作、智能眼镜风险、微型核反应堆和电池创新》,为塑造行业的变革性技术提供了广泛而高水平的视角。虽然这些技术趋势提供了大局,但新兴技术采用雷达提供了实施或试验推动这些趋势的技术所需的战术细节。
技术雷达不是静态的产物,而是动态的工具,必须随着企业的战略目标、市场条件和技术进步而发展。IT 和业务战略往往过于关注当前的业务重点,忽略了短期和长期战略之间的联系,只关注眼前的技术需求。为了解决这个问题,进行外部技术扫描和创建雷达是必不可少的(见图 2)。这些扫描有助于识别能够推动持续竞争优势的新机会和技术。
图 2:进行外部技术扫描的方法
2025 年 Gartner 新兴技术采用雷达将新兴技术分为四个主题,将相关创新分组以形成叙述。这些类别有助于阐明这些技术为何重要以及它们在哪些方面可以增加价值,通过突出交叉点来支持组合创新,并将投资机会与不断发展的业务能力相结合,使创新工作保持专注和可操作性。
-
生产力助推器:提高组织效率、简化工作流程或优化资源利用率的技术
-
直观的优势:技术构建了一个世界,让技术与生活无缝融合,让人感觉自然、直观、毫不费力
-
基础推动因素:支持其他解决方案部署和可扩展性的基础技术
-
新体验:技术重塑用户与数字和物理环境的互动方式
不同的企业,甚至企业内的不同职能部门,在尝试新兴技术时可以承受不同程度的风险。采用不成熟的技术(例如 2025 年 Gartner 新兴技术采用雷达中介绍的技术)会带来成本风险,因为您可能从这些技术中获得的收益可能仍然不确定。Gartner观察到组织有三种主要的风险偏好角色:
-
先驱者的目标是率先采用新兴技术,从而在行业中占据先发优势。他们愿意承担大量投资的风险,希望某些项目能带来丰厚回报,同时也意识到其他项目可能会失败。他们预算风险,以获得创新的最大回报。通常情况下,先驱者开始探索和投资的是6 至 8 年甚至更久的技术。
-
快速跟随者会等待一段时间,直到该技术有一些经过验证的用例,但仍有机会在市场上脱颖而出。通常,快速跟随者会在3到6年内开始规划和准备技术。
-
后期采用者,或早期多数(超过 16% 的目标市场采用者)会等到技术成为早期主流,此时通过经过验证的实施路径可以简化采用。通常,这些角色会实施处于1到3年周期的技术。
通过收集有关新兴技术的情报,团队可以将他们的选择与长期战略目标保持一致,并确保路线图具有前瞻性和全面性。虽然此迭代侧重于上面概述的四个主题,并在多个时间维度上进行了概述和细分,但这些分组并不是严格的界限。技术可以适合多个区域,并且可能会出现值得纳入的新技术。
生产力助推器
该主题涵盖的技术包括人工智能超级计算、决策智能平台(DIP)、组织数字孪生(DTO)、神经符号人工智能、微重力制造、多功能机器人、流程挖掘平台和车辆群体智能(见表1)。
表1 :生产力促进因素:新兴技术
趋势 | 定义 |
人工智能超级计算 | 这是一个不断发展的领域,专门设计的超级计算系统结合了计算加速器、专用软件、高速低延迟网络和性能优化存储方面的最先进创新。这创建了一个集成平台,可加速复杂计算密集型大型 AI 模型(如 GenAI 模型)的训练、推理和部署。在Gen AI的情况下,这些系统需要越来越大的集群配置(10s K GPU)来并行处理具有数千亿到超过一万亿个参数的模型的训练工作负载。 |
决策智能平台 | 用于创建解决方案的软件,这些解决方案由数据、分析、知识和 AI 技术组合而成,可支持、自动化和增强人类或机器的决策能力。DIP 必须具有决策建模、执行和监控的协作能力。DIP 用于设计以决策为中心的解决方案、明确建模决策、协调决策执行流程以及评估和管理决策并审核其结果。 |
组织的数字孪生 | 依赖于操作和上下文数据的软件模型来了解组织如何操作其业务模型、连接其当前状态、响应变化、部署资源、模拟未来状态并提供客户价值。 |
神经符号人工智能 | 一种复合 AI 形式,将 ML 方法与符号系统(例如知识图谱)相结合,以创建更强大、更值得信赖的 AI 模型。这种融合允许将概率模型和统计模式与明确定义的规则和知识相结合,使 AI 系统能够更好地表示、推理和概括概念。这种方法为更有效地解决更广泛的业务问题提供了推理基础架构。 |
微重力制造 | 在近真空环境下制造物体的过程,该环境具有弱重力、高辐射水平以及太空中存在的其他独特条件。 |
多功能机器人 | 机器人设计用于执行多项任务,其外形和功能足够灵活,可根据需要执行不同的任务。要完全实现多功能,它必须能够执行其制造者未预想到的任务,并能够在现场重新编程(通过指导或演示)以进行新活动。 |
流程挖掘平台 | 平台旨在通过从系统、应用程序和设备捕获的事件中提取知识来发现、监控和改进业务运营和流程,从而提供可见性、理解力和洞察力。它们支持自动流程发现、一致性检查、社交网络/组织挖掘、自动构建模拟模型、模型扩展、模型修复、案例预测和基于历史的建议。 |
车辆群体智能 | 模仿动物界的行为,实现远优于群体中每个个体自主决策的集体成果。在规模上,它需要先进的人工智能概念,例如基于代理的建模和编排管理。当应用于自动驾驶汽车时,这些功能可以大大减少数据收集、模拟和自动驾驶汽车决策规则的机器学习训练工作量。 |
AV:自动驾驶汽车;GPU:图形处理单元;ML:机器学习 |
来源:Gartner
描述:
表 1 中定义的新兴生产力提升技术将突破传统生产力的界限。它们将实现规划、制造和物流方面的突破,并支持实时执行,从而实现任务自动化和自主性的新水平。
为何流行:
经济压力和劳动力短缺(以全球出生率下降为代表)要求企业用更少的资源做更多的事情并削减资源。同样,自主业务解决方案的趋势和全球运营的复杂性要求企业找到改善业务运营的方法。这些新兴技术之所以流行,是因为它们要么有助于发现和利用隐藏的机会,要么增强大规模决策能力,要么支持现有劳动力的局限性。
影响:
-
流程挖掘平台通过分析以前的客户联系和底层流程来增强当前和未来的客户互动,以使客户的意图与业务目标保持一致。
-
决策智能平台通过确保决策明确透明,提供更好、更及时和更优化的决策。它们通过捕捉业务背景来降低决策结果的不可预测性。
-
DTO 充当着重要的导航员,随着转型范围和速度的加快,它可以降低失败的风险。通过提供这些相互依赖关系的全面实时视图,DTO 使组织能够做出明智的决策,并以更大的信心和效率应对扩展的复杂性。
-
人工智能超级计算和神经符号人工智能将促进人工智能发展,以提高推理能力、减少偏见并减少培训成本和时间。
-
多功能机器人和微重力制造将创造更高的生产力,使企业能够分配更多的资源进行创新,并将员工资源集中在更高价值的计划上。
行动:
-
通过投资流程挖掘平台,提高业务运营绩效的可见性和理解力。通过探索用例和案例研究,探索采用 DTO 的业务案例,从而超越这些平台。
-
采用决策智能实践来改进决策,通过明确建模和重新想象决策方式以及如何从更有效的支持、增强或自动化中受益,进一步构建现有的 D&A 和 AI 能力。
-
探索将人工智能的进步(例如自适应机器学习和神经符号人工智能)纳入现有企业人工智能路线图的策略。这些技术结合起来可以显著加快处理速度、提高输出准确性并促进各种应用的创新,为人工智能驱动解决方案的未来发展奠定坚实的基础。
-
监控并制定微重力制造、车辆群体智能和多功能机器人的应急计划。通过创建这些技术将提高生产力的合理场景来寻找可能的用例。虽然这些还不是有形的,但探索潜在的用例和满足未来状态所需的其他功能。
直观优势
该主题涵盖的技术包括通用人工智能 (AGI)、智能机器人、机器客户、机器卖家、边缘生成人工智能 (GenAI)、城市多维空间和自然语言机器人控制(见表 2)。
表2 :直观优势:新兴技术
趋势 | 定义 |
通用人工智能(AGI) | 机器的智能(目前假设)可以完成人类可以执行的任何智力任务。AGI 是未来自主人工智能代理的一种特性,它可以在广泛的现实或虚拟环境中实现目标,其效率至少与人类一样高。AGI 也被称为“强人工智能”。 |
城市多维空间 | 智慧城市的元宇宙将创造城市发展的新前沿,重点关注社会中物理与虚拟融合的影响。 |
边缘生成 AI | 在智能手机、个人电脑、物联网设备和边缘服务器的边缘或附近部署 GenAI 模型。这项创新结合了 GenAI 模型和边缘架构的快速发展,提供了具有重大业务影响的全新突破性应用。 |
机器客户 | 非人类经济行为者通过支付获得商品或服务。例如虚拟个人助理、智能家电、联网汽车和支持物联网的工厂设备。机器客户代表人类客户或组织行事。 |
机器卖家 | 非人工代理代表人类卖家或销售组织自动执行端到端销售行为,以销售产品和服务换取付款。目前,机器卖家可用于促进简单和交易性的销售。 |
自然语言机器人控制 | GenAI 的应用将流程分解为一系列可操作的步骤,作为行动模型。此过程使用户能够通过目标(需要做什么)而不是通过过程(采取什么步骤)来指导机器人,这对于多功能机器人的出现至关重要。 |
智能机器人 | 一种由人工智能驱动、通常可移动的机器,旨在自主执行一项或多项物理任务。 |
IoT:物联网 |
来源:Gartner
描述:
“直观优势”涵盖了将我们的环境转变为自主智能生态系统的新兴技术,《福布斯》称其“到 2035 年将带来 10 万亿美元的商机” 。
为何流行:
总体而言,2024 年企业在 AI 方面的支出将激增至约 138 亿美元,是2023 年支出的六倍多。对 AI 的需求和更智能的运营方式正在促使企业重新考虑它们与环境的互动方式。这与围绕智能城市的炒作类似,智能城市旨在减少能源消耗并为公民提供更好的生活质量。
影响:
-
机器客户将对供应链如何看待客户以及如何与客户互动产生重大影响,从而将客户的定义扩大到包括人类和自主的非人类需求生成者。客户体验需要重新构想。
-
边缘 GenAI 在本地设备上提供更高效、更安全、更贴近情境的 GenAI 模型,从而实现更快的功能和更短的响应时间。它通过最大限度地减少整个企业架构中的数据移动,实现数据的本地处理和更好的安全性。
-
城市多维空间将提供智能环境,通过创新推动增长,创造新市场和商业模式。
-
通用人工智能和自然语言机器人控制将创造个性化和可访问的服务,使日常生活更加无缝和愉快。
行动:
-
重新设计战略重点,制定长期计划,与新兴的机器客户和卖家共同成长。反思业务模式和产品组合,以寻找机会让自己成为机器客户和卖家。
-
将智能机器人和机器更深入地融入劳动力队伍,包括机器客户和卖家的未来。关注这种合作将会是什么样子,并解决可能出现的摩擦点。
-
绘制边缘 GenAI 的潜在用例,并根据可衡量的商业价值指标(例如成本节约、收入增长、客户满意度得分以及物理安全性的提高)进行权衡。为这些目标设定明确的时间表。
-
优先考虑数据隐私和安全问题,并确保采取强有力的措施来支持人与机器更紧密协作的趋势。
-
监测和探索通用人工智能和自然语言机器人控制的影响,这将支持人类与非人类实体互动和协作的民主化。
基础推动因素
该主题所涵盖的技术包括虚假信息安全、同态加密 (HE)、绿色软件工程、去中心化自治组织、量子 AI 和 6G。这些关键推动因素旨在支持这些不确定性、减轻潜在威胁并提供可持续扩展的平台,见表 3。
表3 :基础推动因素:新兴技术
趋势 | 定义 |
去中心化自治组织 | 运行在区块链上的数字实体,无需直接人工管理即可运行,并与其他 DAO、数字和人工代理以及公司进行业务互动。DAO 依靠软件共识机制和智能合约进行治理。他们采用此类机制来定义和编程商业活动规则,主要是在去中心化环境中,不受中央权威的影响。 |
虚假信息安全 | 一套可以解决虚假信息的技术,帮助组织维护客户和合作伙伴的信任,保护其品牌声誉,并抵御深度伪造等人工智能驱动的新兴威胁。 |
绿色软件工程 | 构建可持续的、碳效率高且具有碳意识的软件的原则。碳效率是指在软件开发生命周期中排放尽可能少的碳。碳意识是指优化软件以使用低碳能源。构建绿色软件涉及在架构和设计模式、算法、数据结构、编程语言、语言运行时和基础设施方面做出节能选择。 |
同态加密 | HE 使用加密算法来实现加密数据的计算。部分同态加密 (PHE) 仅支持有限的用例,例如减法和加法,但对性能影响不大。全同态加密 (FHE) 支持更广泛的可重复和任意数学运算;然而,通常需要权衡性能。 |
量子人工智能 | 这是量子技术与人工智能交叉领域中新兴的研究领域。该领域旨在利用量子力学的独特性质来开发新的、更强大的人工智能算法,这些算法的性能优于传统算法,并有可能产生专为在量子系统上运行而设计的新型人工智能算法。 |
6G | 继 5G之后即将推出的蜂窝网络技术。2024 年,6G 的功能和时间表尚未明确定义,尽管预计一些通信服务提供商 (CSP) 先驱将在 2028 年左右实现商业化。6G 将增强 5G 功能,旨在提供更高的峰值数据速率(例如 100 Gbps 到 1 Tbps )、更低的延迟(例如 0.1 毫秒)以及更高的连接密度和能源效率(可能效率提高 10 倍)。 |
来源:Gartner
描述:
基础推动因素主题代表着为构建更安全、更高效的数字化未来奠定基础的技术,这几乎是企业发展的跳板或催化剂。
为何流行:
在2025 年Gartner 首席信息官和技术高管调查中,管理网络安全和其他技术风险是受访者最普遍的优先事项。在日益互联互通和超全球化的世界中,企业需要在互联互通的同时保持安全。
同样,随着企业在其数字化计划中生产和消耗更多资源,碳足迹(例如来自计算密集型工作负载的碳足迹)的增加可能与可持续发展目标相悖。此外,使用Gen AI 构建智能应用程序使绿色实践成为当务之急。例如,需要大量的水来冷却与新兴技术(包括 AI 和云)的最新发展相关的硬件。
影响:
-
虚假信息安全解决方案使组织能够主动识别和打击有针对性的虚假信息活动和深度伪造,以维护其品牌声誉,维护客户和合作伙伴的信任,并支持运营弹性。
-
同态加密为隐私和机密数据处理提供了进步。它将能够在加密状态下对数据进行分析,这样处理器就永远不会看到明文数据,但仍能提供准确的结果。
-
DAO 将颠覆当前的公司治理,提供新的组织结构,影响决策、问责制和利益相关者参与的方法。同样,DAO 促进集体决策,这使其成为 Web3 项目的重要治理机制。
-
量子人工智能消除了能源和计算方面的瓶颈,使先进技术能够得到更广泛的部署。同时,6G 将根据底层网络的延迟和弹性直接影响应用程序的性能和可用性。
-
绿色软件工程可以帮助组织实现其战略可持续发展目标。这有助于提高其品牌声誉、满足法规遵从性需求和合同义务,并提高资源效率。
行动:
-
将虚假信息安全作为整体安全运营计划的一部分来实施,以主动检测和处理故意虚假信息活动并保护品牌声誉。
-
继续使用现有的安全控制。同态加密并不一定否定其他安全控制、遵守数据驻留要求或访问控制的需要。
-
识别并跟踪所在行业或邻近地区运营的 DAO。确定机会或威胁并将其纳入业务战略。
-
与业务利益相关者一起制定绿色软件战略,确定软件可持续性对他们重要的地方、为实现这一目标他们愿意接受哪些权衡以及他们需要哪些成功指标。
-
投资量子人工智能研究,以提前了解其在物流、医疗保健和金融等领域的变革潜力。这可能包括建立量子卓越中心或实践社区来培养所需的技能。
新体验
技术包括agentic AI、人的数字孪生(DToP)、AR云、行为分析、员工的AI化身、工业元宇宙、双向脑机接口(BMI)和结构化人类,见表4。
表4 :新体验:新兴技术
趋势 | 定义 |
agentic AI | 自主规划并采取行动以满足用户定义的目标的系统。当前的人工智能助手和 LLM 执行的任务包括生成文本、总结内容或基本使用工具,但它们无法根据自己的“主动性”采取行动。相反,它们会根据用户的提示采取行动或遵循精心策划的流程,但agentic AI正在改变这一点。它有望打造一支由代理组成的虚拟劳动力队伍,协助、减轻和增强人类工作或传统应用程序。 |
员工的人工智能化身 | 类似人类的虚拟人物。AI 化身是使用 CGI 和其他技术(如 GenAI、NLP、合成语音、计算机视觉和情感)创建的。AI 化身可以在内部或外部代表人类员工,以支持品牌或客户互动。 |
AR云 | 实现跨多设备共享体验,让不同的用户在物理空间中与相同的数字对象进行交互。 |
结构化人类 | 通过先进技术设计和增强人类能力,通常涉及基因工程、生物技术、人工智能、控制论以及可穿戴或植入设备。支持人类架构的技术可能包括外骨骼,这是一种可穿戴设备,可增强人类能力以提高人类表现,并通过提供升力支撑、重量分散和姿势矫正来最大限度地减少压力和伤害。 |
行为分析 | 预测模型使用各种形式的数据(包括物联网、第三方或消费者共享数据)来了解更多有关客户的信息,包括他们的行为、习惯和个性化风险。然后可以应用这些情报来开发新产品/服务(包括个性化产品或适当的增值服务)、提高销售额、减少索赔或欺诈,或确定与客户互动的新方式。 |
双向脑机接口 | 双向脑机接口 (BMI) 是一种可改变大脑状态的神经接口,可实现人脑与计算机或机器之间的双向通信。双向脑机接口不仅可以监测用户的脑电图和心理状态,还可以根据分析结果和见解采取一些措施来改变大脑状态。大脑状态的改变是通过头戴式可穿戴设备或侵入式植入物进行非侵入式电刺激来实现的。 |
人的数字孪生 | 一种设计模式,可以近乎实时地反映个人的同步、多重存在以及个人在数字和物理空间中的状态和相关动作和过程。 |
工业元宇宙 | 利用 AR、VR、数字孪生、空间计算、协作工具等技术来创建工业环境的沉浸式数字表示。人员、机器和系统交互和协作,以设计、验证、模拟、构建和优化整个制造生态系统和价值链中的流程。 |
AR:增强现实;CGI:计算机生成图像;LLM:大型语言模型;NLP:自然语言处理;VR:虚拟现实 |
来源:Gartner
描述:
“新体验”主题突出了重新定义人类与数字和物理世界互动方式的新兴技术。这些创新为个人、社会和工业参与开辟了前所未有的可能性。这些技术将共同帮助企业做出更明智和个性化的决策,同时也给企业带来人机共生和人类增强的局限性等道德问题挑战。
为何流行:
根据 2025 年 Gartner 首席信息官和技术高管调查,企业数字技术投资的首要目标是改善客户/公民体验 (58%),其次是改善数字化工作场所 (55%)。在其他地区,类似的调查发现,企业和 IT 领导者越来越愿意或愿意使用自己的合成版本以及参与虚拟环境。投资有助于促进新体验的新兴技术,例如改善连接性、个性化环境甚至人类增强,将增强人类的能力和体验。
影响:
-
代理式人工智能和脑机接口将大幅提升员工和团队的技能,使他们能够管理复杂的流程、项目和计划。然而,自主行动的软件实体或增强型人类增强功能的编排和管理将需要先进的工具和严格的护栏。
-
DTP和行为分析将提高个性化行为的智能化并提升提供全景个性化的能力。
-
通过 GenAI 增强的员工人工智能化身可通过个性化应用程序和界面以富有表现力的类人方式动态传达人工智能生成的内容,从而为组织带来巨大优势。这些化身能够扩展一个人的互动,从而为组织增加其生产价值。
-
AR 云将通过形成物理世界中的人、物体和位置的多层数字表示来改变企业利用和结合物理和数字资产的方式。
-
人体结构化趋势重新定义了人机关系,包括用于增强和提高人类能力以及扩展人类能力的技术。采用外骨骼等支持技术有可能通过增加工人产出大幅提高生产力,并改善对行动不便劳动力的接触。
行动:
-
创建一个老虎团队来识别受元宇宙启发的机会,并通过评估围绕数字业务或新产品/服务介绍的当前高价值用例来构建执行路线图。
-
与客户体验和数据科学领导者合作,规划客户分析(包括行为分析)的需求,以建立整体的客户视图。
-
充分利用员工的人工智能化身,同时将早期用例限制在销售、营销和通信领域,最大限度地减少与“深度伪造”相关的安全性和合规性问题。
-
确定在对规模和效率有重大需求且需要适应性的工作流程中添加代理 AI 的机会。从纯自动化的角度重新思考整个工作流程,并在战略要点将人类重新添加到新的工作流程中。
-
为脑机接口和结构化人类等技术建立道德框架和政策,以应对社会和监管复杂性。
-
探索支持创建结构化人类的技术(例如外骨骼),并通过将形态(上身、下身或全身)与所需角色辅助配对来开发外骨骼用例。例如,上身外骨骼最适合制造和运输,而全身产品将满足建筑、公用事业和物流等更广泛的用例。