支持向量机(Support Vector Machine,SVM)算法,简称SVM 算法。
在保证了分类正确性的同时,还尽可能让两个样本的类别更容易区分。简单来说就是,不仅做对了,还保证了质量。
当样本数据是线性可分(用一条直线可以将样本数据分开)的时候,找到距离两类样本间隔最大的一条线,或者说是两类样本数据之间的中轴线。因为有无数条线可以区分两个分类,只有它们之间的中轴线距离所有样本点的距离最远。
当样本数据是非线性的, 将二维平面映射到三维空间, 用一个平面把原有的空间分割成为了两部分.
在三维上的空间, 就是超平面.
SVM 是一个有监督的二分类器,目标是找到一个超平面,让两类数据距离这个超平面最远,从而对新的数据分类更准确。
SVM算法优点:
- 适用线性问题和非线性问题
- 相对于 KNN / 决策树 这些局部最优解的算法, SVM 可以求得一个全局的最优解
SVM算法缺点:
- 训练所需的资源很大, 运算量和存储量都很高
- 不适合大样本量
- 无法解决多分类问题, 只能通过多个二分类支持向量机的组合来解决
SVM算法适用的样本数据:
- 线性可分数据
- SVM 最初设计用于处理线性可分的数据,即可以使用一条直线或平面将两个类别分开的情况。
- 高维数据
- SVM 在高维空间中的表现非常强大,这使得它对于具有大量特征的数据集,如文本分类或图像识别,非常适用。
- 二分类问题
- SVM 最适合解决二分类问题,即将数据划分为两个类别。
- 小样本数据
- SVM 在小样本数据集上表现较好,即使在样本数量相对较少的情况下也能取得较好的结果。
- 非线性数据
- 通过使用核函数,SVM 能够处理非线性数据,将其映射到高维空间中进行分类。
- 数据维度大于样本数量
- SVM 在高维度且特征数量多于样本数量的情况下仍然表现良好,这种情况常见于基因表达数据等领域。
- 特征之间存在复杂关系
- SVM 不对特征之间的关系做出具体的假设,因此适用于特征之间存在复杂关系的情况。
- 处理噪声
- SVM 对于噪声的鲁棒性较好,可以在数据中存在一定程度的噪声时仍保持高效。
SVM算法的案例:
- 文本分类
- SVM 在文本分类任务中表现出色。例如,可以用于垃圾邮件过滤、情感分析,以及新闻文章的主题分类。
- 图像分类
- SVM 可以用于图像分类,例如识别数字、人脸识别等。通过提取图像特征,SVM 可以训练出一个有效的分类器。
- 手写字符识别
- SVM 在手写字符识别中广泛应用,例如识别银行支票上的手写数字。通过训练一个 SVM 模型,可以实现高准确度的手写字符识别。
- 医学图像分析
- SVM 用于医学图像的分析和分类,例如乳腺癌肿瘤检测。通过分析医学图像的特征,SVM 可以帮助医生进行疾病的诊断。
- 蛋白质折叠预测
- 在生物信息学中,SVM 被用于预测蛋白质的折叠状态。这对于理解蛋白质结构与功能关系具有重要意义。
- 金融欺诈检测
- SVM 在金融领域用于检测信用卡交易中的欺诈行为。通过分析交易数据的特征,SVM 可以识别潜在的欺诈交易。
- 人脸检测
- SVM 可以用于人脸检测任务,例如在图像或视频中检测人脸的位置。这在人脸识别技术中是一个重要的应用。
- 网络入侵检测
- SVM 用于网络安全领域,帮助检测异常网络流量,识别潜在的网络入侵和攻击。
- 股票市场预测
- SVM 在金融领域也可以用于股票市场预测。通过分析市场数据的特征,SVM 可以预测股票价格的涨跌趋势。