什么是机器学习
梯度提升回归(Gradient Boosting Regression)是一种集成学习方法,用于解决回归问题。它通过迭代地训练一系列弱学习器(通常是决策树)来逐步提升模型的性能。梯度提升回归的基本思想是通过拟合前一轮模型的残差(实际值与预测值之差)来构建下一轮模型,从而逐步减小模型对训练数据的预测误差。
以下是梯度提升回归的主要步骤:
- 初始化: 初始模型可以是一个简单的模型,比如均值模型。这个模型将用于第一轮训练。
- 迭代训练: 对于每一轮迭代,都会训练一个新的弱学习器(通常是决策树),该学习器将拟合前一轮模型的残差。新模型的预测结果将与前一轮模型的预测结果相加,从而逐步改善模型的性能。
- 残差计算: 在每一轮迭代中,计算实际值与当前模型的预测值之间的残差。残差表示模型尚未能够正确拟合的部分。
- 学习率: 通过引入学习率(learning rate)来控制每一轮模型的权重。学习率是一个小于 1 的参数,它乘以每一轮模型的预测结果,用于缓慢地逼近真实的目标值。
- 停止条件: 迭代可以在达到一定的轮数或者当模型的性能满足一定条件时停止。
在实际应用中,可以使用梯度提升回归的库,如Scikit-Learn中的GradientBoostingRegressor类,来实现梯度提升回归。
以下是一个简单的Python代码示例:
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pypl

最低0.47元/天 解锁文章
837

被折叠的 条评论
为什么被折叠?



