数据挖掘四类问题算法归纳

数据挖掘涉及分类、聚类、关联和预测四大问题。通过决策树、贝叶斯、支持向量机等方法解决分类问题;利用K均值、期望最大化等算法处理聚类;采用Apriori等挖掘关联;而线性回归则应用于预测分析。
摘要由CSDN通过智能技术生成

       数据挖掘主要解决四类问题(1)分类问题、(2)聚类问题、(3)关联问题、(4)预测问题。

       由于数据挖掘是数据库技术和机器学习的组合,因此一般应用数据库技术进行数据管理,使用机器学习技术进行数据分析。针对这四类常见问题,也形成了比较完善的分析解决方法。

     1.分类问题:决策树归纳分类、贝叶斯分类、支持向量机分类、K最邻近分类、基于规则的分类等;

     2.聚类问题:K均值聚类、K中心点聚类、基于期望最大化的聚类等;

     3.关联问题:基于频繁项集挖掘的Apriori算法、基于约束的关联挖掘等;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值