数据挖掘主要解决四类问题(1)分类问题、(2)聚类问题、(3)关联问题、(4)预测问题。
由于数据挖掘是数据库技术和机器学习的组合,因此一般应用数据库技术进行数据管理,使用机器学习技术进行数据分析。针对这四类常见问题,也形成了比较完善的分析解决方法。
1.分类问题:决策树归纳分类、贝叶斯分类、支持向量机分类、K最邻近分类、基于规则的分类等;
2.聚类问题:K均值聚类、K中心点聚类、基于期望最大化的聚类等;
3.关联问题:基于频繁项集挖掘的Apriori算法、基于约束的关联挖掘等;
数据挖掘主要解决四类问题(1)分类问题、(2)聚类问题、(3)关联问题、(4)预测问题。
由于数据挖掘是数据库技术和机器学习的组合,因此一般应用数据库技术进行数据管理,使用机器学习技术进行数据分析。针对这四类常见问题,也形成了比较完善的分析解决方法。
1.分类问题:决策树归纳分类、贝叶斯分类、支持向量机分类、K最邻近分类、基于规则的分类等;
2.聚类问题:K均值聚类、K中心点聚类、基于期望最大化的聚类等;
3.关联问题:基于频繁项集挖掘的Apriori算法、基于约束的关联挖掘等;