数据挖掘学习笔记:数据特征化和数据区分

        数据特征化是将目标数据的一般特征(特性)的汇总。通常可以通过查询来收集指定类的数据,数据特征化的输出可以有多种形式,例如:饼图、条形图、曲线图,多维数据立方体和交叉表在内的多维表等。举个例子,经理提出如下数据挖掘任务:“汇总一年之内在本公司消费在¥5000元以上的顾客特征”,则可能的顾客概况,如年龄在30-40岁以上的中年,工作稳定,信用等级高。数据挖掘应该允许用户在任意维度下钻取,如在职业维下钻取,以便根据这些顾客的职业类型来观察消费群体。

       数据区分是将目标类型数据对象的一般特征和一个(多个)对比类对象的一般特征进行对比。其中目标类和对比类可以由用户自己指定。举个例子,部门经理需要将上年度销售额增加10%的地区跟同期销售额下降30%的地区进行比较。

       用于数据特征化的方法和数据区分的方法是类似的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值