数据特征化是将目标数据的一般特征(特性)的汇总。通常可以通过查询来收集指定类的数据,数据特征化的输出可以有多种形式,例如:饼图、条形图、曲线图,多维数据立方体和交叉表在内的多维表等。举个例子,经理提出如下数据挖掘任务:“汇总一年之内在本公司消费在¥5000元以上的顾客特征”,则可能的顾客概况,如年龄在30-40岁以上的中年,工作稳定,信用等级高。数据挖掘应该允许用户在任意维度下钻取,如在职业维下钻取,以便根据这些顾客的职业类型来观察消费群体。
数据区分是将目标类型数据对象的一般特征和一个(多个)对比类对象的一般特征进行对比。其中目标类和对比类可以由用户自己指定。举个例子,部门经理需要将上年度销售额增加10%的地区跟同期销售额下降30%的地区进行比较。
用于数据特征化的方法和数据区分的方法是类似的。