import cv2 as cv
import numpy as np
def detect_circles_demo(image):
cv.imshow("input image", src)
dst = cv.pyrMeanShiftFiltering(image, 10, 100)#均值偏移滤波
cimage = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)## 灰度图转换
circles = cv.HoughCircles(cimage, cv.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
cv.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2)
cv.circle(image, (i[0], i[1]), 2, (255, 0, 0), 2)
cv.imshow("circles", image)
'''
cv.pyrMeanShiftFiltering 因为主要目的是预处理降噪,windows size和color distance都不用太大,避免浪费计算时间还有过度降噪。降噪后可以看到桌面上的纹理都被抹去了,纸张边缘附近干净了很多。然而这还远远不够,图案本身,和图像里的其他物体都有很多明显的边缘,而且都是直线边缘。
降噪处理,一般是为了避免,处理边缘时的模糊问题,这样能更精确的发现边缘
右上角出现未检测到的圆,应该是降噪过度导致的,所以修改参数即可。
如图,即可识别所有的原型,如果出现乱线,就是满屏的红线,那就是未降噪,或者是降噪不足导致的。
cv.HOUGH_GRADIENT=》目前唯一实现的方法是cv2.HOUGH_GRADIENT,固定参数
1==》dp:累加器分辨率与图像分辨率的反比。dp获取越大,累加器数组越小。
20=》检测到的圆的中心,(x,y)坐标之间的最小距离。如果minDist太小,则可能导致检测到多个相邻的圆。如果minDist太大,则可能导致很多圆检测不到。
param1=50=》用于处理边缘检测的梯度值方法
param2=30=》cv2.HOUGH_GRADIENT方法的累加器阈值。阈值越小,检测到的圈子越多。
minRadius=0=》半径的最小大小(以像素为单位)
maxRadius=0=》半径的最大大小(以像素为单位)
'''
print("--------- Python OpenCV Tutorial ---------")
src = cv.imread("D:/example/coins.jpg")
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
detect_circles_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
原图效果
检测效果