gamma
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
37、预测评估的FVA框架与相关指标解析
本文深入解析了预测评估中的FVA框架及其核心指标总百分比误差(TPE)和随机附加值(SVA),探讨了FVA在提升预测过程有效性和效率方面的价值。文章系统介绍了常见的预测误差指标、组合方法、概念漂移处理技术,并阐述了预测在需求、经济和时间序列等领域的应用。同时,分析了预测面临的数据质量、不确定性和模型复杂性等挑战及应对策略,展望了人工智能、跨领域融合与实时预测的发展趋势。此外,还涵盖了模型评估选择、数据处理、特征工程以及预测在决策支持中的作用,全面呈现了现代预测技术的体系与前景。原创 2025-09-28 04:45:10 · 44 阅读 · 0 评论 -
36、预测性能评估的FVA框架
本文介绍了预测附加值(FVA)框架,一种用于评估预测过程有效性的相对性能指标。FVA通过与简单预测(安慰剂)和计算机生成预测的比较,识别预测流程中的浪费与低效环节,帮助组织优化预测步骤、提升准确性和效率。文章详细阐述了FVA的定义、应用方法、分析步骤及结果解释,并探讨了其在组合预测中的挑战与扩展形式——随机附加值(SVA)在概率预测中的潜力。FVA不仅是技术工具,更是将科学方法应用于预测管理的实践路径。原创 2025-09-27 13:23:49 · 58 阅读 · 0 评论 -
35、基于LSTVAR - ANN混合模型的增强预测研究
本研究探讨了基于LSTVAR-ANN混合模型的经济预测方法,结合Google趋势与宏观经济数据,分析市场情绪对通货膨胀和利率政策的影响。通过比较不同模型在新冠疫情前后时期的预测性能,发现计量经济学模型(如ARIMA)整体优于神经网络模型,而Google趋势作为市场情绪代理变量具有较高价值。研究还识别了影响预测准确性的关键因素,包括数据周期限制、模型复杂度及情绪映射精度,并提出了优化神经网络架构和拓展情绪因子等改进方向,以提升模型在复杂经济环境下的适应性与预测能力。原创 2025-09-26 10:09:29 · 24 阅读 · 0 评论 -
34、基于LSTVAR - ANN混合模型的增强预测方法
本文提出了一种基于LSTVAR-ANN混合模型的增强预测方法,通过结合平滑转移向量自回归模型(LSTVAR)与人工神经网络(ANN),提升了对经济变量动态变化的捕捉能力。模型引入情绪监督机制,利用客户信心指数作为外部代理,优化转移函数的学习过程,并采用3D-IRF方法可视化不同转移状态下的脉冲响应。研究使用谷歌趋势数据提取未观察因素,分析其对CPI预测的重要性,并比较了有无情绪监督及不同输入方式(原始谷歌趋势 vs PCA降维)下的模型性能。结果表明,该混合模型在预测准确性和经济解释性方面均优于传统基准模型原创 2025-09-25 11:01:10 · 29 阅读 · 0 评论 -
33、机器学习与优化预测:现状、挑战与未来机遇
本文探讨了机器学习在优化问题与宏观经济预测中的应用现状、挑战及未来机遇。重点分析了强化学习在围棋和TSP等组合优化问题中的成功实践,以及LSTVAR-ANN混合模型结合谷歌趋势数据在货币政策与通胀预测中的创新应用。文章总结了当前面临的主要挑战,包括理论依据不足、约束处理困难、泛化能力有限等问题,并提出了算法优化、约束学习深化、迁移学习应用和多模型融合等未来研究方向。同时提供了LSTVAR-ANN模型的实现流程与操作步骤,强调了软件集成的重要性,为推动机器学习在预测与优化领域的深入发展提供了系统性视角。原创 2025-09-24 16:36:30 · 32 阅读 · 0 评论 -
32、机器学习与预测优化的深度融合
本文探讨了机器学习与预测优化的深度融合,涵盖了预测与优化的主要研究方法、面临的挑战及潜在解决方案。重点分析了机器学习在优化问题中的应用,包括使用替代模型加速求解、处理约束条件的方法,并介绍了强化学习和模仿学习在优化决策中的潜力。文章还总结了实际应用案例,如电力系统最优潮流和运输负荷规划,最后展望了未来研究方向,包括通用算法开发、不确定性建模和泛化能力提升。原创 2025-09-23 09:35:47 · 35 阅读 · 0 评论 -
31、机器学习与预测和优化的交叉:理论与应用
本文探讨了机器学习在预测与优化交叉领域的理论与应用,重点分析了‘预测与优化’和‘预测优化问题的决策’两大范式。文章回顾了传统方法的局限性,并介绍了如SPO+、LODL等新型集成方法,旨在提升决策质量。同时讨论了在利用机器学习模型预测决策时如何处理约束的问题,并展望了未来在高效集成、预测-决策关系及实时求解能力方面的研究方向。原创 2025-09-22 11:31:26 · 26 阅读 · 0 评论 -
30、基于深度学习的需求预测模型:原理、实践与展望
本文介绍了一种基于深度学习的变压器需求预测模型,该模型自2019年起在欧洲领先时尚在线零售商中实际应用。博文详细阐述了实验设计、模型特点、与现有方法的对比以及在真实生产环境中的挑战与应对策略。实验表明,即使使用极小比例的商品数据(0.2%-6.6%),模型也能超越简单预测方法,并验证了缩放定律的有效性。文章还探讨了将价格和折扣纳入模型的创新性,提出未来应聚焦于因果或反事实预测、商品间关系建模及折扣决策优化,以提升下游业务价值。原创 2025-09-21 14:27:30 · 47 阅读 · 0 评论 -
29、基于深度学习的需求预测模型:架构、训练与应用
本文介绍了一种基于深度学习的需求预测模型,重点阐述了其在零售场景下的架构设计、训练方法与实际应用。模型结合Transformer的编码器-解码器结构,引入填充与掩码机制、非自回归解码器和单调需求层,以精准建模商品需求与折扣的关系。通过分阶段训练近期与远期预测组件,提升训练效率与预测准确性。实验结果表明,该模型在多个指标上优于朴素预测、LightGBM和DeepAR等基线方法,尤其在高变动场景下表现更优。文章还探讨了缩放定律的有效性、不同模型的适用场景及未来发展方向,为企业的库存管理和动态定价提供了强有力的技原创 2025-09-20 15:25:24 · 52 阅读 · 0 评论 -
28、基于深度学习的需求预测:Zalando的实践与创新
本文介绍了Zalando基于深度学习的全局需求预测模型实践,涵盖从销售数据转化为真实需求的预处理方法、多类型协变量的整合、基于Transformer的编码器-解码器架构设计,以及引入单调需求层以建模价格与需求关系的创新。模型采用加权损失函数优化前几周预测精度,并通过实证验证其在MAE和RMSE上优于对比方法。文章还讨论了实际应用中的监控、下游使用及未来在因果推断与概率化扩展的方向。原创 2025-09-19 16:13:31 · 45 阅读 · 0 评论 -
27、时间序列预测:特征方法与实际应用
本文综述了基于特征的时间序列预测方法及其在实际问题中的应用。重点介绍了FFORMA等特征组合框架,以及其在间歇性需求预测和不确定性估计中的扩展。同时探讨了在线时尚行业中因固定库存、冷启动和数据稀疏性带来的预测挑战,并对比了不同领域所采用的预测方法与评估指标。最后指出未来研究方向,包括概率预测、特征解释性及隐私保护下的特征级预测。原创 2025-09-18 09:34:16 · 54 阅读 · 0 评论 -
26、时间序列预测:目标特征生成、特征提取与预测筛选
本文系统探讨了时间序列预测中的三个关键环节:目标特征生成、特征提取与预测修剪。在目标特征生成方面,介绍了基于遗传算法、STL分解和数据生成过程(DGPs)的多种方法,并推荐了实用工具如R包gratis。特征提取部分涵盖了传统统计特征、时间序列成像、预测多样性及自动特征选择技术,结合tsfeatures、tsfresh等软件包提升效率。预测修剪则强调准确性、鲁棒性和多样性的平衡,提出基于ADT准则的RAD算法优化组合预测性能。文章最后给出了实际应用流程与建议,帮助提升时间序列预测的准确性与可靠性。原创 2025-09-17 15:04:26 · 43 阅读 · 0 评论 -
25、大规模时间序列预测:基于特征的方法解析
本文系统解析了基于特征的大规模时间序列预测方法,涵盖模型训练与预测两阶段框架,介绍了从早期规则方法到现代XGBoost、神经网络等元学习算法的应用演进。文章重点讨论了特征提取(如趋势、季节性、波动性)、多样化数据生成(基于MAR模型的GRATIS方法)、预测池构建与修剪策略,以及间歇性需求和不确定性估计等实际问题的解决方案,为复杂场景下的高精度预测提供了系统性技术路径。原创 2025-09-16 12:45:50 · 39 阅读 · 0 评论 -
24、大规模时间序列预测的元学习方法与实践
本文介绍了大规模时间序列预测中的元学习方法,重点分析了三种元学习器——元选择、损失预测和模型组合的学习机制与优缺点。文章详细阐述了开源Python库'tsfmeta'的设计与使用流程,涵盖从原始数据处理、基础预测生成到元学习器训练与评估的完整 pipeline。通过在M5和KDD2022风电数据集上的实验,验证了MetaComb等元学习器在预测精度上的优越性。同时探讨了基础预测器选择、自动特征提取、可解释性及多目标优化等未来研究方向,展示了元学习在时间序列预测中的巨大潜力。原创 2025-09-15 09:57:29 · 32 阅读 · 0 评论 -
23、基于元学习的大规模时间序列预测
本文综述了基于元学习的大规模时间序列预测方法,介绍了元学习的基本概念及其在时间序列预测中的发展历程。文章回顾了从早期基于规则的方法到最新深度学习框架的演进,并总结了关键研究贡献。重点探讨了设计有效元学习框架的核心要素,包括基础预测器的选择、特征提取策略及元学习器的类型。通过案例分析展示了典型元学习框架(如FFORMS和FFORMA)的实现方式与优势。最后,文章总结了元学习在提升预测自动化与准确性方面的潜力,指出了当前面临的挑战,并展望了未来发展方向。原创 2025-09-14 15:38:20 · 42 阅读 · 0 评论 -
22、神经网络集成在单变量时间序列预测中的应用与效果
本文探讨了神经网络集成在单变量时间序列预测中的应用与效果,重点分析了集成规模、损失函数选择、输入层大小对预测准确性的影响。研究表明,集成模型显著提升预测精度和稳定性,减少对最优超参数的依赖。同时,文章讨论了准确性与计算成本之间的权衡,并提出了适用于不同场景的集成策略。最后展望了未来研究方向,包括引入更多网络类型和优化集成方法。原创 2025-09-13 12:48:52 · 21 阅读 · 0 评论 -
21、神经网络集成在时间序列预测中的应用与性能评估
本研究探讨了神经网络集成在时间序列预测中的应用,通过多样化初始化种子、损失函数和输入层大小构建多类模型,评估其对预测准确性与鲁棒性的影响。实验基于M4竞赛数据集,采用MASE作为评价指标,结果表明集成方法显著优于单个模型,尤其在综合多种多样化策略时表现最优。研究还提供了关于损失函数选择、输入窗口设定及计算成本平衡的实际应用建议,证明神经网络集成是提升时间序列预测性能的有效途径。原创 2025-09-12 13:48:21 · 18 阅读 · 0 评论 -
20、全球时间序列预测中的概念漂移处理与神经网络集成方法
本文探讨了全球时间序列预测中的两个关键问题:概念漂移处理与神经网络集成方法。针对非平稳数据导致的模型性能下降,提出了GDW和ECW两种基于连续自适应加权的方法,实验表明GDW在突然、渐进和逐渐三种漂移类型下均表现最优。在神经网络集成方面,研究通过构建由浅层前馈网络组成的集合,利用改变种子、输入层大小和损失函数等策略提升模型多样性,并采用中位数运算符组合预测结果。在M4竞赛数据集上的实证评估显示,集成方法显著提高了预测准确性与鲁棒性,且计算成本增加有限。研究表明,模型组合是提升时间序列预测性能的有效途径。原创 2025-09-11 11:46:14 · 47 阅读 · 0 评论 -
19、全球时间序列预测中处理概念漂移的方法探究
本文研究了全球时间序列预测中处理概念漂移的问题,提出了两种连续自适应加权方法:误差贡献加权(ECW)和梯度下降加权(GDW)。通过构建基于最近和全部观测值的双模型结构,并动态调整其权重,有效应对突然、增量和渐进型概念漂移。实验采用模拟数据集与多种基准模型对比,结合RMSE和MAE指标及Friedman-Hochberg统计检验,结果表明GDW在各类漂移下均表现最优,ECW亦显著优于传统方法。研究还探讨了方法优势、应用场景、模型调优建议及未来方向,为实际应用提供了可靠解决方案。原创 2025-09-10 15:50:25 · 54 阅读 · 0 评论 -
18、全球时间序列预测中处理概念漂移的方法
本文提出两种新的预测组合方法——误差贡献加权法(ECW)和梯度下降加权法(GDW),用于处理全球时间序列预测中的概念漂移问题。通过在多个序列上训练单一模型的全球预测框架,结合连续自适应加权机制,利用两个子模型(基于完整历史与近期历史数据训练)的加权融合提升对分布变化的适应能力。实验表明,基于LightGBM实现的ECW和GDW方法在模拟数据集上显著优于统计基准和基线模型,有效应对突然、增量和渐进型概念漂移。研究为提升机器学习模型在非平稳环境下的预测鲁棒性提供了可行方案。原创 2025-09-09 13:30:24 · 52 阅读 · 0 评论 -
17、时间序列预测中的交叉学习:原理、应用与优势
本文深入探讨了交叉学习在时间序列预测中的原理、应用与优势。通过对比传统局部模型,阐述了交叉学习如何利用多个时间序列数据训练统一模型,实现性能随数据集规模提升,并具备自动信息传递能力。文章分析了高阶自回归和非线性模型的必要性,强调‘稀疏性’在含噪环境下的局限,并以COVID-19预测为例展示了迁移学习的实际效果。最后提出了添加外部源序列、推导等效模型等实践建议,为提升预测准确性提供了系统性框架。原创 2025-09-08 15:22:38 · 26 阅读 · 0 评论 -
16、时间序列预测中的交叉学习方法解析
本文深入解析了时间序列预测中的交叉学习方法,探讨了如何通过单一全局模型(线性或非线性自回归)来统一表示多个具有不同局部动态特征的时间序列过程。文章从多项式、周期性、指数和逻辑曲线的自回归参数化入手,展示了‘多对一’的建模优势,并提出通过增加滞后项或引入非线性项实现高效交叉学习的策略。同时,分析了含噪声过程下的交叉学习可行性,强调了全局模型在样本量与复杂度之间的良好权衡,为实际预测任务提供了理论支持与应用指南。原创 2025-09-07 11:19:41 · 32 阅读 · 0 评论 -
15、时间序列预测中的局部与交叉学习建模方法
本文深入探讨了时间序列预测中的局部建模与交叉学习建模方法,分析了二者在模型类、估计过程和预测能力上的异同。通过引入模型复杂度、训练误差、数据集大小和局部信息等统计权衡因素,提出了提升交叉学习性能的实用指南。文章还详细介绍了数据集分离、合并与外部聚合等策略,并讨论了模型选择、复杂度设计及可解释性增强方法,为实际应用中的建模决策提供了系统性框架和操作路径。原创 2025-09-06 10:47:03 · 39 阅读 · 0 评论 -
14、利用人工智能模型进行时间序列预测:跨学习的方法与指南
本文探讨了利用人工智能模型进行时间序列预测的新兴方法——跨学习。跨学习通过合并多个时间序列数据训练全局预测函数,解决了传统方法在低样本、高随机性场景下的局限性。文章分析了跨学习与传统局部学习的对比、优势与挑战,并介绍了其在大型数据集和特定过程(如指数增长、周期性模式)中的应用。同时,结合COVID-19预测案例,展示了跨学习在迁移学习中的潜力。尽管面临缺乏基本原则和处理异质数据的挑战,跨学习仍为金融、医疗、能源等领域的时间序列预测提供了新方向。原创 2025-09-05 09:04:02 · 57 阅读 · 0 评论 -
13、利用全球预测模型进行大数据预测
本文深入探讨了全球预测模型在大数据环境下的应用与发展。与传统单变量模型不同,全球模型通过在大量相关时间序列上联合训练,能够捕捉共同模式,提升预测精度。文章介绍了全球模型的数据准备方法、发展历程、复杂性控制策略及主流开源框架(如GluonTS和Darts),并分析了其在零售、智能电网、交通出行等领域的应用优势。同时对比了全球模型与单变量、多元模型的差异,展望了其在模型架构创新、技术融合和跨领域应用中的未来趋势,最后提出了数据质量、模型调优和跨领域合作等实践建议。原创 2025-09-04 11:50:11 · 38 阅读 · 0 评论 -
12、机器学习在新产品需求预测中的应用与探索
本文探讨了机器学习在新产品需求预测中的应用,分析了多种算法(如XGBoost、LightGBM、LSTM、CNN等)在不同零售和电商场景下的表现。研究表明,树基模型在多数情况下优于深度神经网络,尤其在处理混合类型数据和缺乏销售历史的新产品时表现出色。文章还总结了数据管理、模型选择与更新的关键策略,并展望了多模态数据融合、自动化特征工程和模型可解释性等未来发展方向,为管理者提供实施机器学习预测系统的实用指导。原创 2025-09-03 12:02:25 · 50 阅读 · 0 评论 -
11、新产品预测的机器学习方法
本文探讨了机器学习在新产品预测中的应用,介绍了梯度提升树(如XGBoost、LightGBM)和人工神经网络(包括CNN、RNN、Transformer)等常用算法,并分析了如何构建预测问题,涵盖相似产品识别、数据范围选择和问题拆分等关键决策。文章回顾了四个跨行业的案例研究:多行业新产品需求预测(DemandForest)、时尚零售新商品预测、电子产品新机型预测(SVM+DT)以及食品行业新口味预测(ARIMA+RF),比较了不同方法的适用场景与优势。最后展望了模型优化、数据融合、实时预测和跨行业应用等未来原创 2025-09-02 11:45:07 · 19 阅读 · 0 评论 -
10、新产品预测中的机器学习应用
本文探讨了机器学习在新产品需求预测中的应用,分析了新产品分类、数据可用性及传统预测方法的优缺点。重点介绍了德尔菲法、客户调查、扩散模型等传统技术,并对比了人工神经网络(ANN)和梯度提升树(GBT)等机器学习方法在实际案例中的表现。通过M5和M4预测竞赛的成果,展示了机器学习在利用交叉学习和外部数据提升预测准确性方面的优势。文章指出,尽管机器学习在有历史数据支持的场景中表现优异,但对于全新产品仍依赖专家判断,未来结合传统方法与机器学习将是提升预测效果的关键方向。原创 2025-09-01 11:28:51 · 33 阅读 · 0 评论 -
9、时间序列预测方法选择与优化策略
本文系统探讨了时间序列预测中方法选择与性能优化的策略。基于数据可用性、横截面关系、解释变量、预测不确定性等八大标准,提供了预测方法的选型指南,并结合流程图直观展示决策路径。文章进一步介绍了集成方法、元学习、迁移学习、数据增强和先进深度学习架构等提升预测性能的关键技术,通过零售、能源和金融领域的案例分析,展示了不同场景下的方法组合应用。最后,总结了当前挑战与未来发展方向,为实际预测任务提供了全面的理论支持与实践参考。原创 2025-08-31 10:41:47 · 42 阅读 · 0 评论 -
8、时间序列预测:机器学习与深度学习方法解析
本文系统解析了时间序列预测中传统统计方法的局限性,以及机器学习与深度学习方法的兴起与发展。文章重点介绍了神经网络、回归树、支持向量回归等代表性机器学习方法,强调其假设少、自学习能力强、可构建全局模型并融合外生变量的优势,同时也指出其对数据量、计算资源和开发成本的高要求。进一步地,文章阐述了N-BEATS、DeepAR及混合CNN-RNN等深度学习模型的结构特点与应用表现,分析了深度学习在处理大规模时间序列数据中的潜力与挑战,如梯度消失、过拟合和高资源消耗等问题。最后总结指出,应根据数据特征、预测目标和资源条原创 2025-08-30 12:11:12 · 38 阅读 · 0 评论 -
7、人工智能的未来预期及其对经济和社会的影响
本文探讨了人工智能的未来预期对经济和社会的深远影响,包括人们对货币贬值的担忧、动物权利认知的变化以及职业市场的转型。同时,文章综述了时间序列预测的主要方法,涵盖统计模型、机器学习与深度学习技术的特点、优缺点及适用场景,并讨论了方法选择策略与未来发展方向。旨在帮助读者理解AI预期带来的社会行为变化及其在预测科学中的技术演进。原创 2025-08-29 12:16:57 · 49 阅读 · 0 评论 -
5、人类智能与人工智能:未来的碰撞与抉择
本文探讨了人类智能与人工智能的碰撞与未来抉择,分析了脑机接口、通用人工智能和智能增强等前沿技术的发展现状与潜力。通过对比人造智能超越论与人类智能应对论,文章指出AI在图像生成、自然语言处理等领域的突破正深刻影响就业、教育和社会结构。同时,提出通过教育改革、政策规范、加大智能增强投入和保持开放心态来应对AI挑战,并强调在技术快速发展中需关注伦理、公平与人类价值观的平衡。原创 2025-08-27 12:39:59 · 17 阅读 · 0 评论 -
4、人工智能与人类智能的未来图景
本文探讨了人工智能与人类智能的未来发展趋势,分析了当前人工智能在图像识别、自动驾驶等领域的进展,并提出了四种可能的情景:更聪明的刺猬型、专业化刺猬军团、人类与AI完全融合以及更高效的人机交互方式。文章重点介绍了脑机接口和脑对脑接口的技术类型、研究进展及其潜在影响,同时讨论了不同情景下的经济与社会影响、实现人机深度融合面临的挑战,并提出了相应的应对策略。最终展望了一个技术、伦理与社会平衡发展的未来图景。原创 2025-08-26 12:46:24 · 41 阅读 · 0 评论 -
3、人类智能与人工智能:差异、挑战与未来展望
本文探讨了人类智能(HI)与人工智能(AI)在定义、能力、局限性及未来发展路径上的差异与互补关系。通过分析AI在游戏、图像识别、语音处理和自动驾驶等领域的应用现状,指出AI虽在特定封闭任务中超越人类,但在适应性、因果理解和开放环境决策方面仍存在重大局限。文章评估了AI发展的四种可能情景:智能增强、AI主导、协同发展与受阻,并强调建立伦理框架、提升公众认知的重要性,呼吁实现AI与人类智能的和谐共进。原创 2025-08-25 13:49:29 · 74 阅读 · 0 评论 -
2、人工智能:现状、挑战与未来潜力
本文全面探讨了人工智能在预测领域的现状、挑战与未来潜力。从常用缩写词到核心概念,涵盖了AdaBoost、ANNs、AGI等关键技术;通过多个图表和实际案例(如销售需求、新冠疫情预测)展示了时间序列预测的应用方法;详细分析了模型性能评估指标(MAE、RMSE、MASE等)及不同概念漂移下的模型表现;介绍了神经网络集成、元学习框架、基于特征的预测方法,并讨论了销售预测中的数据稀疏性等现实挑战。此外,文章还探索了利用谷歌趋势进行情绪因素提取的预测实践,比较了AI与人类智能在游戏、图像识别等领域的优劣,反思了AI对原创 2025-08-24 15:49:05 · 20 阅读 · 0 评论 -
1、人工智能与预测:现状、挑战与未来机遇
本文深入探讨了人工智能在预测领域的现状、挑战与未来机遇。从时间序列预测、新产品需求预测到全球预测模型,文章系统分析了机器学习与深度学习的应用进展,并介绍了特征基方法、元学习、神经网络集成等前沿技术。同时,讨论了数据质量、概念漂移、伦理法律等问题对预测模型的影响,提出了FVA评估框架和风险管理策略。最后展望了多模态数据融合、可解释性增强、实时预测和跨领域应用等未来发展方向,为人工智能预测的理论研究与实践提供了全面参考。原创 2025-08-23 10:53:43 · 58 阅读 · 0 评论
分享