二叉搜索树的创建与删除!!!!!!(C++)

二叉搜索树是一种特殊的二叉树,在插入节点时如果遇到比该节点的值大的数,则再在该节点的右子树中查找插入的位置,如果遇到比该节点小的数,则在该节点的左子树的位置插入,直到找到叶子节点再根据规则插入

比如:用下列一组数字建立二叉搜索树
在这里插入图片描述
所以二叉搜索树的中序遍历是一组有序数列

#pragma once
#include <iostream>
#include <stack>

template<class T>
struct BSTNode
{
	BSTNode(const T& val = T())
		:val_(val),
		left_(nullptr),
		right_(nullptr)
	{ }

	T val_;
	BSTNode<T>* left_;
	BSTNode<T>* right_;
};

template<class T>
class BSTree
{
	typedef BSTNode<T> Node;
public:
	//构造
	BSTree()
		:root(nullptr)
	{ }

	//析构
	~BSTree()
	{
		Destory(root);
	}

	//先序遍历
	void Prev()
	{
		_Prev(root);
	}

	//中序遍历
	void InOrder()
	{
		_InOrder(root);
	}

	//后序遍历
	void End()
	{
		_End(root);
	}

	//插入节点
	bool Insert(const T& data)
	{
		//根节点为空
		if (nullptr == root)
		{
			root = new Node(data);
			return true;
		}

		//根节点不空
		//1.找到插入节点的位置,并记录parent的值
		Node* cur = root;
		Node* parent = nullptr;
		while (cur)
		{
			parent = cur;
			if (cur->val_ == data)
				return false;
			else if (cur->val_ > data)
				cur = cur->left_;
			else
				cur = cur->right_;
		}

		//2.插入新节点
		cur = new Node(data);
		if (data < parent->val_)
			parent->left_ = cur;
		else
			parent->right_ = cur;

		return true;
	}

	//删除节点
	bool Erase(const T& data)
	{
		if (nullptr == root)
			return false;

		//1.找出删除节点的位置
		Node* cur = root;
		Node* parent = nullptr;

		while (cur)
		{
			if (data == cur->val_)
				break;
			else if (data > cur->val_)
			{
				parent = cur;
				cur = cur->right_;
			}
			else
			{
				parent = cur;
				cur = cur->left_;
			}
		}

		//没找到
		if (nullptr == cur)
			return false;

		//2.删除该节点
		//只有右子树或是叶子节点
		if (nullptr == cur->left_)
		{
			if (nullptr == parent)
				root = root->right_;
			else
			{
				if (cur == parent->left_)
					parent->left_ = cur->right_;
				else
					parent->right_ = cur->right_;
			}
		}
		//只有左子树
		else if (nullptr == cur->right_)
		{
			if (nullptr == parent)
			{
				root = cur->left_;
			}
			else
			{
				if (cur == parent->left_)
					parent->left_ = cur->left_;
				else
					parent->right_ = cur->left_;
			}
		}
		//左右子树均存在
		else
		{
			//找替代节点
			Node* del = cur->right_;
			parent = cur;
			while (del->left_)
			{
				parent = del;
				del = del->left_;
			}
			cur->val_ = del->val_;

			if (del == parent->left_)
				parent->left_ = del->right_;
			else
				parent->right_ = del->right_;

			cur = del;
		}

		delete cur;
		return true;
	}
private:
	//非递归先序遍历
	void _Prev(Node* Proot)
	{
		Node* cur = Proot;
		stack<Node*> s;

		while (cur || !s.empty())
		{
			while (cur)
			{
				cout << cur->val_ << " ";
				s.push(cur);
				cur = cur->left_;
			}

			Node* top = s.top();
			if (nullptr != top->right_)
				cur = top->right_;
			s.pop();
		}
		cout << endl;
	}

	//非递归中序遍历
	void _InOrder(Node* Proot)
	{
		/*if (nullptr == Proot)
			return;*/
		Node* cur = Proot;
		stack<Node*> s;

		while (cur || !s.empty())
		{
			while (cur)
			{
				s.push(cur);
				cur = cur->left_;
			}

			Node* top = s.top();
			cout << top->val_ << " ";
			s.pop();
			
			if (nullptr != top->right_)
				cur = top->right_;
		}
		cout << endl;
	}

	//非递归后序遍历
	void _End(Node* Proot)
	{
		Node* cur = Proot;
		Node* prev = nullptr;
		stack<Node*> s;

		while (cur || !s.empty())
		{
			while (cur)
			{
				s.push(cur);
				cur = cur->left_;
			}

			Node* top = s.top();
			//右树不为空
			if (nullptr != top->right_ && prev != top->right_)
				cur = top->right_;
			//右树为空
			else 
			{
				cout << top->val_ << " ";
				prev = top;
				s.pop();
			}
		}
		cout << endl;
	}

	//销毁空间
	void Destory(Node*& Proot)
	{
		if (Proot)
		{
			Destory(Proot->left_);
			Destory(Proot->right_);
			delete Proot;
			Proot = nullptr;
		}
	}
private:
	Node* root;
};

void TestBST()
{
	int a[] = { 5, 3, 4, 1, 7, 8, 2, 6, 0, 9 };

	BSTree<int> t;
	for (auto e : a)
	{
		t.Insert(e);
	}

	t.Erase(5);

	t.Prev();
	t.InOrder();
	t.End();
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值