/*
* 默认输入参数值
* C: regularization parameter
* tol: numerical tolerance
* max passes
*/
double C = 1; //对不在界内的惩罚因子
double tol = 0.01;//容忍极限值
int maxPasses = 5; //表示没有改变拉格朗日乘子的最多迭代次数
/*
* 初始化a[], b, passes
*/
double a[] = new double[x.length];//拉格朗日乘子
this.a = a;
//将乘子初始化为0
for (int i = 0; i < x.length; i++) {
a[i] = 0;
}
int passes = 0;
while (passes < maxPasses) {
//表示改变乘子的次数(基本上是成对改变的)
int num_changed_alphas = 0;
for (int i = 0; i < x.length; i++) {
//表示特定阶段由a和b所决定的输出与真实yi的误差
//参照公式(7)
double Ei = getE(i);
/*
* 把违背KKT条件的ai作为第一个
* 满足KKT条件的情况是:
* yi*f(i) >= 1 and alpha == 0 (正确分类)
* yi*f(i) == 1 and 0<alpha < C (在边界上的支持向量)
* yi*f(i) <= 1 and alpha == C (在边界之间)
*
*
*
* ri = y[i] * Ei = y[i] * f(i) - y[i]^2 >= 0
* 如果ri < 0并且alpha < C 则违反了KKT条件
* 因为原本ri < 0 应该对应的是alpha = C
* 同理,ri > 0并且alpha > 0则违反了KKT条件
* 因为原本ri > 0对应的应该是alpha =0
*/
if ((y[i] * Ei < -tol && a[i] < C) ||
(y[i] * Ei > tol && a[i] > 0))
{
/*
* ui*yi=1边界上的点 0 < a[i] < C
* 找MAX|E1 - E2|
*/
int j;
/*
* boundAlpha表示x点处于边界上所对应的
* 拉格朗日乘子a的集合
*/
if (this.boundAlpha.size() > 0) {
//参照公式(5)
j = findMax(Ei, this.boundAlpha);
} else
//如果边界上没有,就随便选一个j != i的aj
j = RandomSelect(i);
double Ej = getE(j);
//保存当前的ai和aj
double oldAi = a[i];
double oldAj = a[j];
/*
* 计算乘子的范围U, V
* 参考公式(4)
*/
double L, H;
if (y[i] != y[j]) {
L = Math.max(0, a[j] - a[i]);
H = Math.min(C, C - a[i] + a[j]);
} else {
L = Math.max(0, a[i] + a[j] - C);
H = Math.min(0, a[i] + a[j]);
}
/*
* 如果eta等于0或者大于0 则表明a最优值应该在L或者U上
*/
double eta = 2 * k(i, j) - k(i, i) - k(j, j);//公式(3)
if (eta >= 0)
continue;
a[j] = a[j] - y[j] * (Ei - Ej)/ eta;//公式(2)
if (0 < a[j] && a[j] < C)
this.boundAlpha.add(j);
if (a[j] < L)
a[j] = L;
else if (a[j] > H)
a[j] = H;
if (Math.abs(a[j] - oldAj) < 1e-5)
continue;
a[i] = a[i] + y[i] * y[j] * (oldAj - a[j]);
if (0 < a[i] && a[i] < C)
this.boundAlpha.add(i);
/*
* 计算b1, b2
* 参照公式(6)
*/
double b1 = b - Ei - y[i] * (a[i] - oldAi) * k(i, i) - y[j] * (a[j] - oldAj) * k(i, j);
double b2 = b - Ej - y[i] * (a[i] - oldAi) * k(i, j) - y[j] * (a[j] - oldAj) * k(j, j);
if (0 < a[i] && a[i] < C)
b = b1;
else if (0 < a[j] && a[j] < C)
b = b2;
else
b = (b1 + b2) / 2;
num_changed_alphas = num_changed_alphas + 1;
}
}
if (num_changed_alphas == 0) {
passes++;
} else
passes = 0;
}
return new SVMModel(a, y, b);//返回a【】是支持向量,b是截距,w(i)=sum(1,m)a【i】y(i)*x(i),w(i)*x+b=0是分割超平面
支持向量机(SVM)入门(三,smo算法可参考代码框架)
最新推荐文章于 2024-04-11 00:07:38 发布