支持向量机(SVM)入门(三,smo算法可参考代码框架)

/*
         * 默认输入参数值
         * C: regularization parameter
         * tol: numerical tolerance
         * max passes
         */
        double C = 1; //对不在界内的惩罚因子
        double tol = 0.01;//容忍极限值
        int maxPasses = 5; //表示没有改变拉格朗日乘子的最多迭代次数
        
        /*
         * 初始化a[], b, passes 
         */
        
        double a[] = new double[x.length];//拉格朗日乘子
        this.a = a;
        
        //将乘子初始化为0
        for (int i = 0; i < x.length; i++) {
            a[i] = 0;
        }
        int passes = 0;
        
        
        while (passes < maxPasses) {
            //表示改变乘子的次数(基本上是成对改变的)
            int num_changed_alphas = 0;
            for (int i = 0; i < x.length; i++) {
                //表示特定阶段由a和b所决定的输出与真实yi的误差
                //参照公式(7)
                double Ei = getE(i);
                /*
                 * 把违背KKT条件的ai作为第一个
                 * 满足KKT条件的情况是:
                 * yi*f(i) >= 1 and alpha == 0 (正确分类)
                 * yi*f(i) == 1 and 0<alpha < C (在边界上的支持向量)
                 * yi*f(i) <= 1 and alpha == C (在边界之间)
                 * 
                 * 
                 * 
                 * ri = y[i] * Ei = y[i] * f(i) - y[i]^2 >= 0
                 * 如果ri < 0并且alpha < C 则违反了KKT条件
                 * 因为原本ri < 0 应该对应的是alpha = C
                 * 同理,ri > 0并且alpha > 0则违反了KKT条件
                 * 因为原本ri > 0对应的应该是alpha =0
                 */
                if ((y[i] * Ei < -tol && a[i] < C) ||
                    (y[i] * Ei > tol && a[i] > 0)) 
                {
                    /*
                     * ui*yi=1边界上的点 0 < a[i] < C
                     * 找MAX|E1 - E2|
                     */
                    int j;
                    /*
                     * boundAlpha表示x点处于边界上所对应的
                     * 拉格朗日乘子a的集合
                     */
                    if (this.boundAlpha.size() > 0) {
                        //参照公式(5)
                        j = findMax(Ei, this.boundAlpha);
                    } else 
                        //如果边界上没有,就随便选一个j != i的aj
                        j = RandomSelect(i);
                    
                    double Ej = getE(j);
                    
                    //保存当前的ai和aj
                    double oldAi = a[i];
                    double oldAj = a[j];
                    
                    /*
                     * 计算乘子的范围U, V
                     * 参考公式(4)
                     */
                    double L, H;
                    if (y[i] != y[j]) {
                        L = Math.max(0, a[j] - a[i]);
                        H = Math.min(C, C - a[i] + a[j]);
                    } else {
                        L = Math.max(0, a[i] + a[j] - C);
                        H = Math.min(0, a[i] + a[j]);
                    }
                    
                    
                    /*
                     * 如果eta等于0或者大于0 则表明a最优值应该在L或者U上
                     */
                    double eta = 2 * k(i, j) - k(i, i) - k(j, j);//公式(3)
                    
                    if (eta >= 0)
                        continue;
                    
                    a[j] = a[j] - y[j] * (Ei - Ej)/ eta;//公式(2)
                    if (0 < a[j] && a[j] < C)
                        this.boundAlpha.add(j);
                    
                    if (a[j] < L) 
                        a[j] = L;
                    else if (a[j] > H) 
                        a[j] = H;
                    
                    if (Math.abs(a[j] - oldAj) < 1e-5)
                        continue;
                    a[i] = a[i] + y[i] * y[j] * (oldAj - a[j]);
                    if (0 < a[i] && a[i] < C)
                        this.boundAlpha.add(i);
                    
                    /*
                     * 计算b1, b2
                     * 参照公式(6)
                     */
                    double b1 = b - Ei - y[i] * (a[i] - oldAi) * k(i, i) - y[j] * (a[j] - oldAj) * k(i, j);
                    double b2 = b - Ej - y[i] * (a[i] - oldAi) * k(i, j) - y[j] * (a[j] - oldAj) * k(j, j);
                    
                    if (0 < a[i] && a[i] < C)
                        b = b1;
                    else if (0 < a[j] && a[j] < C)
                        b = b2;
                    else 
                        b = (b1 + b2) / 2;
                    
                    num_changed_alphas = num_changed_alphas + 1;
                }
            }
            if (num_changed_alphas == 0) {
                passes++;
            } else 
                passes = 0;
        }
        
        return new SVMModel(a, y, b);//返回a【】是支持向量,b是截距,w(i)=sum(1,m)a【i】y(i)*x(i),w(i)*x+b=0是分割超平面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值