支持向量机(SVM)入门C#代码实现smo(四,算法编译调试成功,针对开头举例,数学推导与程序运行结果一致)

注释: 前三篇参考豆子的博客和支持向量机三重境界

  int RandomSelect(int i)
        {
            int j = i;
            while (i == j)
            {
                Random rm = new Random();
                j = rm.Next(0, 2);
            }
            return j;
        }

        int kk(int i, int j)
        {
            int k11 = 18; int k12 = 21; int k21 = k12; int k13 = 6; int k31 = 6; int k23 = 7; int k32 = 7; int k22 = 25; int k33 = 2;
            int temp = 0;
            switch (i)
            {
                case 0://1
                    {
                        if (j == 0) {temp=k11; } else if (j == 1) {temp=k12; } else { temp=k13;}
                    }
                    break;
                case 1: { if (j == 0) {temp=k21; } else if (j == 1) {temp=k22; } else {temp=k23; } }//2
                    break;
                case 2: { if (j == 0) { temp = k31; } else if (j ==1) { temp = k32; } else { temp = k33; } }//3
                    break;
            }
            return temp;
        }
        void smo()
        {
            List<Point> xx=new List<Point>();
            Point temppt=new Point(3,3);
            xx.Add(temppt);
             temppt=new Point(4,3);
             xx.Add(temppt);
             temppt=new Point(1,1);
              xx.Add(temppt);

              List<int> yi= new List<int>();
              int tempyi = 1;
              yi.Add(tempyi);
              tempyi = 1;
              yi.Add(tempyi);
              tempyi = -1;
              yi.Add(tempyi);
            /*
         * 默认输入参数值
         * C: regularization parameter
         * tol: numerical tolerance
         * max passes
         */
        double C = 1; //对不在界内的惩罚因子
        double tol = 0.01;//容忍极限值
        int maxPasses = 5; //表示没有改变拉格朗日乘子的最多迭代次数
        List<int> boundAlpha = new List<int>();
        /*
         * 初始化a[], b, passes 
         */

        double[] a = new double[xx.Count];//拉格朗日乘子
        //this.a = a;
        
        //将乘子初始化为0
        for (int i = 0; i < xx.Count; i++)
        {
            a[i] = 0;
        }
        int passes = 0;
        double b = 0;
        
        while (passes < maxPasses) {
            //表示改变乘子的次数(基本上是成对改变的)
            int num_changed_alphas = 0;
            for (int i = 0; i < xx.Count; i++)
            {
                //表示特定阶段由a和b所决定的输出与真实yi的误差
                //参照公式(7)
                //double Ei = getE(i);
                int k11 = 18; int k12 = 21; int k21 = k12; int k13 = 6; int k31 = 6; int k23 = 7; int k32 = 7; int k22 = 25; int k33 = 2;
                double fxi = 0;
                switch (i)
                {
                    case 0://1
                        { fxi = a[0] * yi[0] * k11 + a[1] * yi[1] * k21 + a[2] * yi[2] * k31 + b; }
                        break;
                    case 1://2
                        { fxi = a[0] * yi[0] * k12 + a[1] * yi[1] * k22 + a[2] * yi[2] * k32 + b; }
                        break;
                    case 2://3
                        { fxi = a[0] * yi[0] * k13 + a[1] * yi[1] * k23 + a[2] * yi[2] * k33 + b; }
                        break;
                }
                double Ei =fxi-yi[i];
                /*;
                 * 把违背KKT条件的ai作为第一个
                 * 满足KKT条件的情况是:
                 * yi*f(i) >= 1 and alpha == 0 (正确分类)
                 * yi*f(i) == 1 and 0<alpha < C (在边界上的支持向量)
                 * yi*f(i) <= 1 and alpha == C (在边界之间)
                 * 
                 * 
                 * 
                 * ri = y[i] * Ei = y[i] * f(i) - y[i]^2 >= 0
                 * 如果ri < 0并且alpha < C 则违反了KKT条件
                 * 因为原本ri < 0 应该对应的是alpha = C
                 * 同理,ri > 0并且alpha > 0则违反了KKT条件
                 * 因为原本ri > 0对应的应该是alpha =0
                 */
                if ((yi[i] * Ei < -tol && a[i] < C) ||
                    (yi[i] * Ei > tol && a[i] > 0)) 
                {
                    /*
                     * ui*yi=1边界上的点 0 < a[i] < C
                     * 找MAX|E1 - E2|
                     */
                    int j;
                    /*
                     * boundAlpha表示x点处于边界上所对应的
                     * 拉格朗日乘子a的集合
                     */
                    if (boundAlpha.Count > 0)
                    {
                        //参照公式(5)
                        int maxK = -1;   //用于保存临时最大索引
                        double maxDeltaE = 0;  //用于保存临时最大差值--->|Ei-Ej|
                        //j = findMax(Ei, boundAlpha);
                        for (int ii = 0; ii < boundAlpha.Count; ii++)
                        {
                            int k = boundAlpha[ii];
                            if (k == i) continue;
                            double fxk = 0;
                            switch (k)
                            {
                                case 0://1
                                    { fxk = a[0] * yi[0] * k11 + a[1] * yi[1] * k21 + a[2] * yi[2] * k31 + b; }
                                    break;
                                case 1://2
                                    { fxk = a[0] * yi[0] * k12 + a[1] * yi[1] * k22 + a[2] * yi[2] * k32 + b; }
                                    break;
                                case 2://3
                                    { fxk = a[0] * yi[0] * k13 + a[1] * yi[1] * k23 + a[2] * yi[2] * k33 + b; }
                                    break;
                            }
                            double Ek = fxk - yi[k];
                            double deltaE = Math.Abs(Ei - Ek);
                            if (deltaE > maxDeltaE)
                            {
                                maxK = k;
                                maxDeltaE = deltaE;
                            }
                        }
                        j = maxK;//0--2
                    }
                    else
                    {
                        //如果边界上没有,就随便选一个j != i的aj
                        j = RandomSelect(i);//1--3,与0---2矛盾,这个函数已更正未0--2,已经全部更改为0---2
                    }
                    
                    //double Ej = getE(j);
                    double fxj = 0;
                    switch (j)
                    {
                        case 0://1
                            { fxj = a[0] * yi[0] * k11 + a[1] * yi[1] * k21 + a[2] * yi[2] * k31 + b; }
                            break;
                        case 1://2
                            { fxj = a[0] * yi[0] * k12 + a[1] * yi[1] * k22 + a[2] * yi[2] * k32 + b; }
                            break;
                        case 2://3
                            { fxj = a[0] * yi[0] * k13 + a[1] * yi[1] * k23 + a[2] * yi[2] * k33 + b; }
                            break;
                    }
                    double Ej = fxj - yi[j];
                    //保存当前的ai和aj
                    double oldAi = a[i];
                    double oldAj = a[j];
                    
                    /*
                     * 计算乘子的范围U, V
                     * 参考公式(4)
                     */
                    double L, H;
                    if (yi[i] != yi[j]) {
                        L = Math.Max(0, a[j] - a[i]);
                        H = Math.Min(C, C - a[i] + a[j]);
                    } else {
                        L = Math.Max(0, a[i] + a[j] - C);
                        H = Math.Min(0, a[i] + a[j]);
                    }
                    
                    
                    /*
                     * 如果eta等于0或者大于0 则表明a最优值应该在L或者U上
                     */
                    double eta = 2 * kk(i, j) - kk(i, i) - kk(j, j);//公式(3)
                    
                    if (eta >= 0)
                        continue;
                    
                    a[j] = a[j] - yi[j] * (Ei - Ej)/ eta;//公式(2)
                    if (0 < a[j] && a[j] < C)
                        boundAlpha.Add(j);
                    
                    if (a[j] < L) 
                        a[j] = L;
                    else if (a[j] > H) 
                        a[j] = H;
                    if (L == H) continue;

                    if (Math.Abs(a[j] - oldAj) < 1e-5)
                        continue;
                    a[i] = a[i] + yi[i] * yi[j] * (oldAj - a[j]);
                    if (0 < a[i] && a[i] < C)
                        boundAlpha.Add(i);
                    
                    /*
                     * 计算b1, b2
                     * 参照公式(6)
                     */
                    double b1 = b - Ei - yi[i] * (a[i] - oldAi) * kk(i, i) - yi[j] * (a[j] - oldAj) * kk(i, j);
                    double b2 = b - Ej - yi[i] * (a[i] - oldAi) * kk(i, j) - yi[j] * (a[j] - oldAj) * kk(j, j);
                    
                    if (0 < a[i] && a[i] < C)
                        b = b1;
                    else if (0 < a[j] && a[j] < C)
                        b = b2;
                    else 
                        b = (b1 + b2) / 2;
                    
                    num_changed_alphas = num_changed_alphas + 1;
                    double min = a[0] * a[0] * yi[0] * yi[0] * k11 + a[0] * a[1] * yi[0] * yi[1] * k12 + a[0] * a[2] * yi[0] * yi[2] * k13
                        + a[1] * a[0] * yi[1] * yi[0] * k21 + a[1] * a[1] * yi[1] * yi[1] * k22 + a[1] * a[2] * yi[1] * yi[2] * k23
                            + a[2] * a[0] * yi[2] * yi[0] * k31 + a[2] * a[1] * yi[2] * yi[1] * k32 + a[2] * a[2] * yi[2] * yi[2] * k33 
                                - a[0] - a[1] - a[2];
                }
            }
            if (num_changed_alphas == 0) {
                passes++;
            } else 
                passes = 0;
        }
        
    //    return new SVMModel(a, y, b);//返回a【】是支持向量,b是截距,w(i)=sum(1,m)a【i】y(i)*x(i),w(i)*x+b=0是分割超平面

        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值