团队成员:北京邮电大学 模式识别实验室硕士研究生
今年5月,参加了天池医疗AI大赛,这次比赛是第一次参加此类的比赛,经过接近半年的比赛,终于10月落下帷幕,作为第一次参加比赛,能在接近3000支队伍中拿到第8名,感觉已经比较满意,不过也有许多遗憾之处,在此主要介绍一下我们比赛的方案。
摘要
本次竞赛要求从数千例CT 影像中找出肺结节的位置,并给出概率。相比于图片,CT影像可以看成3维的数据,更大更耗费资源,也更难以提取特征。我们采用分割+分类的方法,先利用分割网络从CT影像中找出疑似的结节,再利用分类,对找出的疑似结节进行判断。 我们采用了基于3D的解决方案,因此能提取更多的空间信息。同时我们在设计网络的时候,充分考虑不同结节的尺度,识别的难易程度,结合Residual和Inception的结构思想,设计了ReCeption结构,在不同尺度,分辨率的结节上都有着较好的效果。团队队员第一次参加竞赛,经验不够丰富,基本未使用模型融合的方式,主要是简单的boost方法。
一、赛题解析
1.1 任务介绍
本次大赛要求参赛者使用患者的CT影像数据(mhd格式)训练模型算法,在测试数据集中找出CT影像中的肺部结节的位置并给出是一个真正肺结节的概率。初赛在线下自由完成(先使用了TensorFlow后来改用PyTorch),复赛必须在线上使用PAI平台的定制版的Caffe。