天池医疗AI大赛[第一季] Rank8解决方案[附TensorFlow/PyTorch/Caffe实现方案]

团队成员:北京邮电大学 模式识别实验室硕士研究生

今年5月,参加了天池医疗AI大赛,这次比赛是第一次参加此类的比赛,经过接近半年的比赛,终于10月落下帷幕,作为第一次参加比赛,能在接近3000支队伍中拿到第8名,感觉已经比较满意,不过也有许多遗憾之处,在此主要介绍一下我们比赛的方案。

摘要

本次竞赛要求从数千例CT 影像中找出肺结节的位置,并给出概率。相比于图片,CT影像可以看成3维的数据,更大更耗费资源,也更难以提取特征。我们采用分割+分类的方法,先利用分割网络从CT影像中找出疑似的结节,再利用分类,对找出的疑似结节进行判断。 我们采用了基于3D的解决方案,因此能提取更多的空间信息。同时我们在设计网络的时候,充分考虑不同结节的尺度,识别的难易程度,结合Residual和Inception的结构思想,设计了ReCeption结构,在不同尺度,分辨率的结节上都有着较好的效果。团队队员第一次参加竞赛,经验不够丰富,基本未使用模型融合的方式,主要是简单的boost方法。

一、赛题解析

1.1 任务介绍

本次大赛要求参赛者使用患者的CT影像数据(mhd格式)训练模型算法,在测试数据集中找出CT影像中的肺部结节的位置并给出是一个真正肺结节的概率。初赛在线下自由完成(先使用了TensorFlow后来改用PyTorch),复赛必须在线上使用PAI平台的定制版的Caffe。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值