初等数论笔记

整数的可整除性特征

  • 能被2或者5整除的数的特征就是未尾数字能被2或者5整除
  • 能被4或者25整除的数的特征就是末两位数字能被4或者25整除
  • 能被8或者125整除的数的特征就是末三位数字能被8或者125整除
  • 能被3整除的数的特征就是每位数字的和能被3整除
  • 能被9整除的数的特征就是每位数字的和能被9整除
  • 能被99整除的数的特征就是从后向前划分每两位数字为一段,每一段的数字相加的和能被99整除,比如9801,98+01=99,能被99整除,所有9801能被99整除。

例题

1、两个四位数a275和472b,它们的乘积能被72整除,求a,b的值。
分析,能被72整除,就是能被8*9整除,很明显a275不能被8整除,所以a275只能被9整除,则a+2+7+5=a+14,
a的取值为1~9,所以a的值为4。
472b能被8整除,末三位为72b,所以b的值为0或者8。
当b的值为8时,4728还可以被3整除,因此a+14能被3整除也可以,所以a的值还可以取1,4,7。

2、已知23!=258D20C67388849766AB000
分析,因为1~23中有5,10,15,20,所以得有4个0,因此B=0;去掉4个0之后,66A应该是8的倍数,即A的值为4。因为11 * 9=99,所以这个数应该是99的倍数,即00+00+64+76+49+88+38+67+0C+D2+58+2=444+10D+C,因为99*5=495,因此D=5,C=1。

数论最重要的一个概念——同余

带余除法:对于任意的a,b(b!=0),b|a,存在唯一的商q,和余数r,使得a=bq+r;
同余:如果两个整数a,b除以m(m为正整数)后余数相同,则称a,b关于模m同余
a÷m=k1+r
b÷m=k2+r
使用三个横杠表示同余
a≡b(mod m) 还可以拓展一下a≡b≡r(mod m)

性质1:

a≡b(mod m) 等价于
(1)m|(a-b)
(2)存在整数k,使得a-b=mk

性质2:同余式相加

a≡b(mod m),c≡d(mod m)则 a+c≡b+d(mod m)

性质3:同余式相乘

a≡b(mod m),c≡d(mod m)则
(1)ac≡bd(mod m)
(2)a^ n≡b^n(mod m)

例题

求证3^ 2018+4^2019被5整除。
分析,明显会使用同余式相乘的性质
证明:
任何一个被除数a与除数b可以表示成a=kb+r k为倍数,r为余数
所以4可以表示成 4=15+(-1)即4≡-1(mod 5)
而3可以表示成3=1
5+(-2),即3≡-2(mod 5),明显-2的2018次方不好求解,但是3的平方是9,而9可以表示成9=2*5+(-1)即9≡-1(mod 5)
(-1)^1009≡9 ^1009(mod 5), (-1) ^2019≡4 ^2019(mod 5)
再根据同余式相加
(-1)^1009+ (-1) ^2019 ≡ 9 ^1009+4 ^2019 ≡ -2(mod 5)
结果是 表达式并不能被5整除。
在这里插入图片描述 在这里插入图片描述

末尾数相同问题

(1)数0,1,5,6的任何正整数幂,末位数仍是0,1,5,6
(2)n^ m与n^ (m+4)个位数相同。
证明(2),个位数相同,说明%10的余数相同,也说明二者相减得到的数,尾数为0;
当m=1时,n^ (m+4)-n^ m=n^5-n,刚才已经证明5|n ^5-n,那么2能否整除n ^5-n,从奇偶性可以判断出,是可以的,所以10|n ^5-n(2和5都是质数,这个结论对于其它数不一定)
而n^ (m+4)-n^ m=n^(m-1)(n ^5-n),因为10|n ^5-n,显而易见,10可以整除n ^(m-1)(n ^5-n),所以得证。

例题

1、求2^100+3 ^101+4 ^102的个位数
2^100的个位数与2 ^4的个位数相同(注意这里不能是2 ^0)
3 ^101的个位数与2 ^1相同
4 ^102的个位数与4 ^2相同
所以表达式的个位数值为6+3+6,即个位数为5。
2、求2017^2018 ^2019的个位数字
根据末位数相同问题的第二个性质,首先求2018^2019的值,因为2018为偶数,两个2018相乘mod 4的余数为0;根据余数定理,余数的积等于积的余数,2018 ^2019mod 4的值为0,因为4|2018*2018,所以2017 ^2018 ^2019≡2017 ^4≡7 ^4(mod 10),7 ^4mod10=1;

同余的应用

2018^2019除以7的余数为?
2015^2016除以7的余数为?
因为2018≡2(mod 7),所以 2018^2019≡2 ^2019(mod 7)≡8 ^673(mod 7)≡1 ^673(mod 7),因此余数为1
因为2015≡6(mod 7),所以 2015^2016≡6 ^2016(mod 7)≡-1 ^2016(mod 7),因此余数为1

求证连续三个正整数的立方和都能被3整除
求证连续三个正整数的立方和都能被9整除

中国剩余定理/孙子定理

1、被3除余1,被7除余2的最小正整数________
2、被4除余1,被25除余2的最小正整数_______
显然可以使用枚举法:
1、1,4,7,10,13,16,19,
2,9,16,
最小正整数显然是16
如果求第二小的正整数会是多少呢,通过枚举会发现是16+21=37,其实就是第一个数,加上二者的乘积。
2、1,5,9,13,17,21,25,29,
2,27,52,77,102,127
被4除余1,如果枚举的话,需要枚举的数比较多,如果枚举被25除余2的数,看是否满足被4除余1,会更快一点,77除4就余1,最小正整数为77
如果求第二小的正整数会是多少呢,通过枚举会发现是77+100=197,通解就是77+100n
3、求2^999的最后两位数
分析:求最后两位数,就是mod100的余数,也就是mod4,mod25的余数
2^999≡____mod(100)
2^999≡0(mod 4)
2^999≡((2 ^10) ^99)*2 ^9≡(-1) *2 ^9(mod 25)≡-12(mod 25)≡13(mod 25) 因为1024mod25=24,即-1。
但末位数还要满足mod 4 为0,所以枚举的话13,38,63,88,即求得尾数为88。
4、a、b都是正整数,且24a^2=b ^2-1求证a、b中恰有一个是5的倍数
证明:
24a^2=b ^2-1移项为
b ^2-24a ^2=1
因为24≡4≡-1(mod5)
所以原式可以变为b ^2 + a ^2≡1(mod5)
n≡0(mod5) n^2≡0(mod5)
n≡1(mod5) n^2≡1(mod5)
n≡2(mod5) n^2≡4(mod5)
n≡3(mod5) n^2≡9(mod5) n ^2≡4(mod5)
n≡4(mod5) n^2≡16(mod5) n ^2≡1(mod5)
满足条件的是余数为0和1,恰好有一个是5的倍数。

质数与合数

2、3、5、7、11、13、17…这样的数为质数
2是唯一的偶质数,其余都是奇质数
3是唯一的3的倍数质数
①p为质数,p^3+3也是质数,则p为____
②p为质数,p^2+2也是质数,则p为____
①因为任何奇数的3次方也是奇数,再加3为偶数不可能是质数,所以p只可能是唯一的偶质数
②p为2,p^2+2=6=23;
p为5,p^2+2=27=3 ^3;
p为7,p^2+2=51=17
3;
p为11,p^2+2=123=413;
通过枚举可以发现,当p>3时,p^2+2都是3的倍数
证明如下:
p>3
p≡1(mod3),p^2≡1(mod3)
p≡2(mod3),p^2≡4≡1(mod3)
因此p^2≡1(mod3)
p^2+2≡0(mod3),当p>3时,p ^2+2不可能存在质数。
③p是质数,p^4+4 ^p+4也是质数则p为_____
当p=2,每一项都是偶数,表达式不可能是质数
当p=3,p^4+4 ^p+4=81+64+4=149,149是质数
当p=5,p^4+4 ^p+4=625+1024+4=1653=3
551,1653不是质数
证明当p>3时,
通过②已经证明,p^2≡1(mod3),所以p ^4≡1(mod3)
因为4≡1(mod3),所以4^p≡1(mod3)
因此三个式子相加为3≡0(mod3)
不可能再是质数。
④证明:p,p+2都是大于3的质数,那么6是p+1的因数
p,p^3+2,都是大于3的质数,那么6是p+1的因数
⑤p,p+2,p+6,p+8,p+14都是质数,则这样的质数有几个,只有一个就是5
当p=5满足条件
当p=5k+1时,p+14=5k+15,p是5的倍数
当p=5k+2时,p+8=5k+110,p是5的倍数
。。。。。
所以得证。

算数基本定理及约数定理

算数基本定理:任意一个大于1的正整数,都能被质数唯一分解
N=p1^a1p2 ^a2pn ^an
其中p1<p2<…<pn为不相等的质数,a1,a2…an为正整数。
性质1(约数个数定理),N的正因数个数为
cnt=(a1+1)
(a2+1)…(an+1)
性质2 (约数和定理)N的所有正因数的和为
sum=(1+p1+p1^2+…+p1 ^a1)(1+p2+p2 ^2+…+p2 ^a2)…(1+pn+pn ^2+…+pn ^an)

例题1:3600*a=b^4,求最小的a;
如果不在这里出这道题,真是无从下手,
先对3600进行质因数分解为3600=2^4 * ( 3 ^2) * (5 ^2)。
2^4 * ( 3 ^2) * (5 ^2)*a = b ^4,因此2,3,5必定是b的因数,b ^4可以表示为(2*3*5) ^4
(2*3*5) ^4=2^4 * ( 3 ^2) * (5 ^2)*a,推出a=225,因此最小值为225。
例题2,求最小的正整数n,使得它的1/2是一个平方数,1/3是一个立方数,1/5是一个5次方数

又是一个不易想到方法的题目,同样还是要使用到质因数
根据题意可以得出,2,3,5一定是n的因数,所以n可以分解质因数为,题目中是求最小
n=2^α1 * 3 ^α2 * 5 ^α3
n/2=2^(α1-1) * 3 ^α2 * 5 ^α3 是一个平方数,所以一定能开方,也就是2| (α1-1),2|α2,2|α3;
同理
n/3=2^α1* 3 ^(α2-1) * 5 ^α3 是一个立方数,所以一定能开立方,也就是3| α1,3|(α2-1) ,3|α3;
n/5=2^α1* 3 ^α2 * 5 ^(α3-1) 是一个5次方数,所以一定能开5次方,也就是5| α1,5|α2 ,5|(α3-1);
从整除的角度看,
2| (α1-1),3| α1,5| α1,α1的最小值为15,
2|α2,3|(α2-1) ,5|α2 ,α2的最小值为10,
2|α3,3|α3,5|(α3-1),α3的最小值为6;
所以最小正整数n=2^15 * 3 ^10 * 5 ^6

例③:

求600的所有正约数的个数
求600的所有正约数的和,
求600的所有正约数的倒数和
600的质因数分解为
600=2^3 * 3 * 5^2
根据性质一,正约数的个数为(3+1)(1+1)(2+1)=24
根据性质二,正约数的和为(1+2+4+8)(1+3)(1+5+25)=1860
第三问就比较南求出来了
如果把24个约数全找出来,按照从小到大的顺序排列,就不难求解了
1 2 3 4 5 6 8 10 12 15 20 24 25 30 40 50 60 75 100 120 150 200 300 600(使用程序求出)
1的倒数和600的倒数组队相加,2和300的倒数组队相加。。。通分之后分母均为600,而分子恰好是正约数的和
结果为1860/600=3.1

完全剩余系及其应用

定义:任意正整数m,如果用m除所有整数,余数为0,1,2,3,。。。m-1,可以把整数分为m类,若从每一类中取一个数,组成的数组称为模m的完全剩余系(完系)。

性质1:若整数a1,a2,a3,…am,模m,两两不同余,则a1,a2,a3,…am构成模m的一个完系。
性质2:任意连续m个整数构成模m的一个完系,其中必有一个是m的倍数。

抽屉原理

基本的抽屉原理有两条:
( 1 )如果把x+k (k≥1 )个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m*x+k (x>k≥1 )个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

例题

例①:设n为正奇数。证明:数2-1,2^2-1,…,2 ^n-1中必有一个数是n的倍数。
证明:使用反证法:
假设不存在一个数是n的倍数,那么每个数除n求余数,可能的结果为1,2,3,4,。。。,n-1;
数2-1,2^2-1,…,2 ^n-1共有n个数,根据抽屉原理,必有两个数的余数相同,假设为第i个和第j个,切i<j,即
2^i-1≡2 ^j -1(mod n)
2 ^ j - 2^i≡0(mod n)
2^i(2 ^(j-i) -1)≡0(mod n)
又因为n为正奇数,所以2^i / n一定不是0
因此,(2 ^(j-i) -1)/n=0,因为j>i,所以2 ^(j-i) -1,为数列中的一个数,与假设矛盾,所以数列中必有一个数是n的倍数。

例②:对于任意质数p>=7,证明:
9, 99,999,…,99…999(n个9),必有一个是p的倍数
在这里插入图片描述
应用:例③:证明任意分数都是有限小数或无限循环小数。
证明方法如果没有相关知识基础,很难看明白,所以我们先了解一点基础知识:

前提是先要掌握算数基本定理

分母,质因子中仅有2、5,则化为有限小数,若含其它因子,则必为循环小数。
对于没接触过数论的人,有一个比较好玩的事:
1/10=0.1;而1/9=0.111……{1循环};
1/100=0.01;1/99=0.010101…………{01循环};
以此类推,分母为【10的n次方】的单位分数,化成小数是形如【0.00…01】n位有限小数;
而分母为【10^n - 1】的单位分数,分母是n个9组成的n位数,化成小数是形如【0.00…01……】的循环小数,循环节就是n位。
以1/999为例,0.001001001001……… 三位一循环

那么134/999=0.134134134134…

也就是说,循环小数都可以与一类分数简单互换,分母的位数就是循环节的位数,当然,这样得到的分数不一定最简。
0.5555……=5/9
0.363636……=36/99=4/11
这个规律还是很容易相信的。
那么接下来,我们要证明一件事:

任何一个质因子不含2、5的数,都会有一个倍数,是若干个9组成的多位数。上面的手写证明已证(其实费马小定理就可以解决了)

比如,67,这个数,证明999………99是它的倍数。

先写出一个数列,67项,这67个数分别是:9、99、999、9999…{67个9},
①67一共有66种非0余数
②这个数列67项,必有两个数模67同余。
③这两个数的差是67的倍数。
④这两个数的差必为99…9900……00
⑤那么就必有99……99是67的倍数。
⑥分母为67的分数必可通分成分母为99……99的分数,此为纯循环小数,从小数点后开始循环。
将67换成其它,证法相同。

PS:一个因子中无2、5的数m,为分母时,均可化为纯循环小数。

那么若分母为2m、5m、4m、25m……呢?

那么99……9900…00就是它的倍数。

13/99=0.131313………

13/990也就是将此数小数点向左移动一位即可:0.013131313…………

以此类推。

例:23/185
原分数通分为:1242/9990

1242/999=1+243/999=1.243243243……

23/185=0.1243243243………

习题12 : a1,a…, am是模m的一个完系。对任意整数k,(k,m)=1,证明: ka1, ka2, … kam构成模m的一个完系。
利用反证法,便可证明。

费马小定理

费马小定理(Fermat’s lttle theorem)是数论中的一个重要定理,在1636年提出, 其内容为:假如p是质数, a是整数,(a,p)=1,a,p没有公约数。
则 a^(p-1)≡1(mod p)
两边同时乘以a,得到,a^p≡a(mod p)
根据费马小定理可以推出
p|a^(p-1) -1,即之前证明过的3|a ^2 -1。

例④:求出25^8000除以7的余数是多少?
因为(25,7)=1,所以可以使用费马小定理 a^(p-1)≡1(modp)|进行求解

例⑤:设p是一 个大于5的素数,求证: 240|p^4 - 1
240=2^4 * 3 * 5
(5,p)=1,所以5|p^4 - 1(费马小定理)
p^4 - 1=(p ^2-1)(p ^2+1)
(3,p)=1,所以3|(p ^2-1)
p^4 - 1=(p ^2-1)(p ^2+1)=(p-1)(p+1)(p ^2+1)
p为素数,而偶素数只有2,同时p>5,所以(p-1)、(p+1)、(p ^2+1)都是偶数,能整除222,
又因为连续的两个偶数可以被8整除,所以2^4|(p-1)(p+1)(p ^2+1)

例⑥:求证:对任意整数a,b,ab(a^4-b ^4)都能被30整除

习题⑦:设n为正整数, 7|3^n+n ^3,则7|3 ^n * n ^3 + 1。
7|3^n+n ^3,所以7|(3 ^n+n ^3)* n^3

裴蜀定理

定理:若a,b是整数,且( a,b)=d,对于任意的整数xy, ax+ by是d的倍数,特别地,一定存在整数x,y,使ax+by=d

性质1 : 若a,b是整数,且( a,b)=1 ,则存在整数x,y,使ax+by=1

性质2:设a|c, b|c,且( a,b)=1,则ab | c

性质3:设a|bc,且(a,b)=1,则a|c,特别的,设p为质数,p|bc,则p|c或p|b

最大公约数和最小公倍数

性质1 :设a,b分别是整数m,n的公约数和公倍数,则a|(m,n),[m,n] | b

性质2:(a1,a2…,an)=((a1,a2),a3…,an)
[a1,a2…,an]=[[a1,a2)],a3…an]

性质3 :
(ma1, ma2.,…, man) =m(a1,a2.,… an)
[ma1,ma2, … man]=m[a1, a2, a3…an]

性质4:设m,n是正整数,则mn=(m,n)*[ m,n]

性质5 :存在整数x1,x2,…,xn ,使得a1x1+a2x2+…+anxn=(a1,a2,…,an)

补充性质:(m,n)| [m,n]。

例①:设m,n是正整数,且mn/(m+n)也是正整数,证明(m,n)>1
先了解下面这个性质
(m,n)=1,那么(m+n,n)=1
在这里插入图片描述
反证法:假设(m,n)=1
那么(m+n,n)=1,因为m+n|mn,所以m+n|m,不可能,产生矛盾,所以(m,n)>1

例②:对于任意正整数n ,求证(21n+4)/(14n +3)不可约分。
不可约分代表二者的最大公约数为1,即((21n+4),(14n +3))=1
证明:
因为3(14n+3)-2(21n+4)=1
根据裴蜀定理,存在x,y,使得((21n+4),(14n +3))=1
还有一种证明方法,就是求二者的最大公约数,使用更相减损之术
(21n+4,14n+3)=(14n+3,7n+1)=(7n+2,7n+1)=(7n+1,1)=1

例③:设m,n是正整数, m>n。已知(m,n)=4 , [m,n]=12 ,求m和n
已知(m,n)=4,m=4m1,n=4n1,并且(m1,n1)=1;
[m,n]=4[m1,n1]=12
所以[m1,n1]=3,最小公倍数为3,有机因为m>n,所以m1>n1,m1=3,n1=1
因此m=12,n=4;

例④:设m,n是正整数,m>n。已知mn=300+ 5(m,n)+ 7[m,n], 求m和n
假设(m,n)=p,[m,n]=q ,p<q;
pq=300+5p+7q
分解公因式为 (p-7)(q-5)=335=5*67
解得:p=12,q=72
设m=12m1,n=12n1,m1>n1,带入[m,n]=q
[12m1,12n1]=72,所以
[m1,n1]=6,最小公倍数为6,只可能是1,6或者2,3
所以m1=6,n1=1或者m1=3,n1=2;
求出 m=72,n=12或者m=36,n=24

进位制的基本概念和应用

例①:设1987在b进制下可以写成三位数xyz,且x+y+z=1+9+8+7,求x y z b。

例②:求证,对于任意进位制,10201都是合数

不定方程

不定方程,是指末知数的个数多于方程个数,且未知数受到某些限制的方程或方程组。一般研究整数解或正 整数解。

定理1 :不定方程ax+ by=c有整数解,则(a, b)|c
在这里插入图片描述
定理2,在求后半部分时,可以先让ax+by=0,求出x的后半部分为bt,y的后半部分为-at,或者x的后半部分为-bt,y的后半部分为-at。
例①:设m,n是正整数,且3m+2n=225.
(1)若(m,n)=15,则m+n=_
(2)若[m,n]=45,则m+n=__

例②:有质量分别为11g和17g的砝码若干个.在天平上要直接称出3g的物体,至少要几个砝码?
例③: (出自张丘建《算经》) 中国百鸡问题今有鸡翁一,值钱伍;鸡母一,值钱三;鸡雏三,值钱.凡百钱买鸡百只 ,问鸡翁、 母、雏各几何 ?

高斯函数[x]

高斯函数:取整函数是指不超过实数x的最大整数称为x的整数部分,记作[x]
性质1 : x=[x]+a , 0< a <1,即x的小数部分,记作{x}
性质2 : [x]<x<[x]+1或者x-1 < [x] <= x
性质3 : [n+x]=n+[x]

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值