【交通流量预测论文】A novel hybrid method for achieving accurate and timeliness vehicular traffic flow predict

A novel hybrid method for achieving accurate and timeliness vehicular traffic flow prediction in road networks 

一种实现道路网络中车辆交通流准确、及时性预测的新型混合方法

发表在ScienceDirect

摘要

交通运输系统的高效、顺畅运行对于保证现代社会的正常运转和人们的日常生活至关重要。然而,由于现有道路网络的容量有限,车辆的增加导致了更频繁和严重的交通拥堵。因此,如何有效利用现有系统有限的通行能力,通过适当的交通流管理来降低拥堵发生的概率是亟待解决的关键问题。在这种情况下,及时准确的交通流预测对于制定合理的交通控制策略至关重要,直接影响交通控制措施的有效性。然而,作为一个典型的大型复杂网络,不同路段的交通运动是相互影响的。由于对系统内共存交通流实时变化的理解有限,现有的基于单点的交通流预测方法缺乏预测交通流短期异常的能力。此外,道路网络的规模直接影响现有基于机器学习的预测算法的计算复杂度,导致可扩展性有限。为了解决这些问题,本文提出了一种结合历史数据和道路网络的混合方法。我们的混合方法有效地将路网的先验知识融入到预测过程中,从而获得更准确的预测和更好的可扩展性。基于真实世界数据集的模拟实验表明,与传统的基于机器学习的方法相比,我们的方法在预测精度方面有了实质性的提高。这表明了显著的潜在效益,因为我们的方法可以为决策者提供更准确和及时的信息来管理交通流量,从而提高效率,降低能耗,并最大限度地减少对环境的影响。因此,我们提出的混合方法有可能对交通管理和相关领域产生有意义的影响,最终有助于建立一个更可持续、更高效的交通系统。

1介绍

运输系统的有效运作是当代社会的一个重要组成部分,促进了货物和材料的交流和流通。然而,社会经济的快速发展和汽车保有量的增加导致交通拥堵成为一个严重的世界性社会问题。这个问题已经造成了巨大的经济损失和环境问题。智能交通系统(ITS)研究的重点是如何提高复杂道路系统中车辆的交通效率。

在智能交通系统(ITS)的各个组成部分中,交通流量预测(TFP)作为解决交通问题的关键工具已经引起了人们的广泛关注[10]。准确和及时的TFP结果提供了有关道路状况的宝贵信息,从而能够有效地管理现实世界的挑战。例如,交通管理部门可以利用精确的交通流量预测来识别潜在的拥堵区域,并实施主动交通引导措施和信号灯控制策略[4],使车辆均匀分布在交通网络[5]中。这种方法有助于防止车辆在特定路口过度汇聚,从而减少特定路口的交通拥堵。此外,它还可以防止由于路网中交叉路口的互联性质而导致的级联故障造成的系统范围的交通拥堵[6,7]。

交通流量预测的影响超出了城市交通流量的直接调节。它也起着重要的作用

在ITS领域的相关应用领域,如车联网(IoV)和车载云/边缘计算(VC/EC)。VC/EC近年来受到关注,因为它能够利用道路车辆和其他交通系统参与者提供的计算和通信资源,用于各种its和智慧城市应用,包括路线和交通灯控制,以及城市监控[8,9]。此外,交通流量预测可用于解决车辆网络中的安全相关问题,如[10]所示,作者利用高精度预测交通量信息。

已经引入了各种方法来解决交通流量预测(TFP)问题,可大致分为传统的参数统计模型和基于非参数机器学习(ML)的方法。由于交通数据的复杂性和非线性,传统的统计模型面临着巨大的挑战。虽然这些模型提供了可解释性,但它们的适应性有限,因为参数化模型结构需要由人类预先定义。另一方面,基于机器学习的方法,特别是深度学习技术,在TFP任务中越来越受欢迎,因为它们能够自动从历史交通数据中提取和学习相关特征,而无需复杂的数学模型设计和参数调整。在各种基于ml的方法中,深度学习技术,如循环神经网络(rnn),通过捕获时间序列数据[11]中的时间依赖性,在TFP任务中表现出了显著的性能。此外,卷积神经网络(cnn)被用于交通流预测,从交通流图像[12]中提取空间特征。

这些方法利用深度学习模型的能力,从原始数据中提取复杂和高级特征,从而在TFP任务中实现更准确的预测。

然而,针对单点TFP设计的基于ml的TFP方法预测精度的提高已经达到饱和点。

这些方法主要关注交通数据,而忽略了交通系统的拓扑信息。由于路段的交通流受到路网中其他元素的影响,在没有路网附加信息的情况下,预测精度受到限制。为了解决这一问题,本文对现有的基于ml的预测方法进行了综合研究。在真实数据集上进行了仿真测试,以评估具有代表性的基于ml的模型的性能。随后,引入了一种混合模型,该模型结合了路网拓扑信息和其他元素,进一步提高了基于ml的测试方法的准确性。该方法对所有经过测试的基于ml的模型证明了更高的准确性。

本文的其余部分组织如下。第2节提供了各种TFP模型的总体概述。第3节和第4节使用真实数据集分析了代表性方法。基于已确定的现有方法的缺点,我们将讨论我们提出的方法,并在第5节中解释其工作原理。然后在第5节中对所提出的方法在相同的数据集上进行测试。最后,第六部分对全文进行了总结,并对后续工作进行了讨论。

2文献综述

由于交通流的动态性,TFP通常被视为一个时间序列分析问题,它随着时间的推移而不断变化。参数方法和非参数方法是TFP研究中广泛使用的两大类方法。参数化方法需要一个定义良好的模型和严格的参数选择过程,使它们对人类来说更易于解释和直观。一种常用的TFP参数模型是自回归综合移动平均(ARIMA)模型。

当数据中存在季节性模式时,ARIMA模型特别有效,这使得它们在预测每日、每周或每年季节性的交通流量数据时很受欢迎。它们相对容易解释,因为它们模拟了观测结果与自身滞后之间的依赖关系,从而可以识别数据中的模式和关系。ARIMA模型可以用历史交通流数据进行训练,以准确预测未来的交通状况。然而,ARIMA模型有其局限性。它们假定数据具有平稳性,即数据的统计特性不随时间变化。在实践中,由于意外事件,如事故或道路封闭,交通流数据经常表现出非平稳行为。此外,ARIMA模型通常需要大量的历史数据才能有效,而这些数据可能并不总是可用的。

另一方面,非参数方法(如基于ml的方法)不依赖于定义良好的方程或人为干预[10]。机器学习应用在流量预测中占据主导地位。回归是一个基本的机器学习问题,涉及识别数据集中的趋势和模式,并找到一个很好地捕捉它们的表达式。线性回归(LR)是一种简单但常用的方法,它用一条线拟合数据来表示趋势[5]。它适用于简单的流量预测任务,并且易于实现。

基于lr的模型在正常情况下显示出有希望的结果,特别是当数据可以大致近似线性时。在[18]中,通过将交通流数据拟合成多元曲线,采用线性回归预测交通流。然而,LR模型在处理外部变化时不能很好地工作。它不能捕捉交通流数据中的非线性成分和短期波动,由于交通数据的非线性和不确定性,不太适合交通流预测场景。尽管如此,它仍然被用作比较其他高级方法[20]性能的基准。

另一个用于交通流预测的流行机器学习模型是支持向量机(SVM),具体形式为回归支持向量机(SVR)[21]。与LR不同的是,SVR利用核函数将数据集映射到高维空间,然后基于优化方法建立超平面,利用拉格朗日对偶问题求解超平面。这个超平面被设计成在预定的误差阈值(称为最大边际휖)内包含尽可能多的数据点。通过捕获交通数据中存在的非线性成分,SVR可以提供更准确的回归结果[22]。SVR在交通流预测中的应用在[23]上首次被介绍,显示了其在该研究领域的潜力。支持向量机的计算效率也很高,这使得它非常适合需要快速更新的在线预测任务。

基于树的模型是另一种广泛采用的机器学习方法,通常用于构建流量预测模型。这些模型基于决策树,决策树根据一个或多个特征的截止值递归地将数据划分为子集。除法过程创建多个子集,每个子集包含数据的一个特定实例。最后一个子集称为叶节点,用于根据该节点中训练数据的平均结果预测结果。基于树的交通流预测模型已被证明是有效的,并在实践中得到了广泛的应用。

为了提高传统决策树模型在交通预测任务中的性能,集成决策树被提出。这些模型结合了多个弱回归量来实现更准确的预测。集成方法的例子包括梯度增强回归树、随机森林和XGBoost。在本研究中,我们利用传统的决策树和集成方法,特别是随机森林,进行交通流预测。在训练过程中,随机森林构造多棵决策树,输出代表每棵树平均预测模式的类。该方法也可以作为辅助工具来增强其他预测方法。例如,RF-CGASVR[25]利用随机森林来确定交通流数据中特征的显著性,然后使用随机森林来导出SVR的最优控制元组。

深度学习的出现彻底改变了交通流量预测算法,它允许创建具有多层的人工神经结构来服务于不同的目标。复发性神经网络(rnn)是一种流行的用于时间序列分析的神经网络。rnn的关键特征是它们能够通过循环模块合并历史信息。每个模块动态地确定当前预测所需的过去信息的数量以及要传递给后续模块的信息量。这使得rnn非常适合于建模连续数据,如交通流量,其中过去的信息可以显著影响未来的结果。

长短期记忆(LSTM)和门控递归单元(GRU)是时间序列分析中常用的两种递归神经网络模型,旨在解决传统递归神经网络的梯度消失和爆炸问题。这些模型引入了遗忘门单元来选择性地丢弃交通数据中的不相关信息,使它们能够确定预测的最佳滞后值。LSTM和GRU的主要区别在于GRU通过将三个门减少到两个门来简化循环模块的结构。在实践中,两种模型之间的性能差异通常可以忽略不计。

由于路段之间的互联性和连续的交通流,空间信息在交通流预测中至关重要。使用二维矩阵表示道路网络有助于卷积神经网络(cnn)的使用,因为它允许将输入交通数据转换为矩阵格式[12]。此外,图神经网络(gnn)是捕获交通空间特征的自然选择。例如,在b[26]中,作者使用空间和时间卷积来捕获交通数据中的空间和时间关系。同样,在[27]中,作者结合了图和卷积的概念来自动推断不同流量序列之间的相互依赖关系。总的来说,在基于gnn和基于cnn的方法中,除了交通数据之外,空间信息也是一个关键特征。

基于注意的模型是交通流预测中一组流行的深度学习技术,因为注意层在选择重要的先前交通状态并在训练过程中赋予它们更高的权重方面是有效的。例如,Transformer模型已被成功地用于捕获交通预测[28]的时间序列数据的连续性和周期性。注意力也可以与rnn相结合,以提高其有效性。

然而,深度学习方法的一个关键限制是它们对计算资源的高要求。在rnn中,输入数据是顺序处理的,这使得实现并行计算以提高计算效率具有挑战性。此外,gnn和cnn在处理大规模车辆网络和处理大矩阵输入时需要大量的计算资源。此外,当输入序列较长时,由于需要计算所有编码输入向量的加权组合,注意力的计算变得非常耗时。

在本文中,我们使用线性回归、SVR、决策树、随机森林、LSTM和GRU进行实验。

3.传统基于ml的预测方法的实证研究

在本节中,我们将简要概述交通流预测问题,然后通过实验评估总结和分析传统的基于机器学习的预测方法的特点。

3.1. TFP概述

在基于单一位置的交通流预测问题中,目标是基于历史交通流数据预测特定位置的未来交通量。这个问题可以作为时间序列分析框架内的回归任务来处理。

历史交通流数据,收集在一段连续时间的k步骤,是表示为[L(t_{k-n}),L(t_{k-n+1}),...,L(t_{k-1})],其中L(t_i)表示t_i时刻的流量。目标是预测该地点未来的交通量,用[L(t_{k+1}),L(t_{k+2}),...,L(t_{k+m})]表示。

为此,需要设计一种预测方法f(⋅)。该方法以作为输入的历史交通流数据[L(t_{k}),...,L(t_{k-n})]并生成的序列预测未来交通卷[L(\hat{t_{k+1}}),...,L(\hat{t_{k+m}})]在数学上,这一过程可以表达为

在式(1)中,n和m分别是决定用于预测的记录交通流数据长度和预测时间序列长度的参数。例如,如果将n和m设置为1,则预测功能仅利用最近的交通流量观察来预测给定位置的近期交通量。

3.2. Evaluation metrics

如上所述,在考虑交通流预测的应用场景时,例如指定中长期交通控制策略(如几小时内或早晚高峰时段),以及指定短期交通信号控制策略(几分钟内),评估交通流预测算法有效性的标准通常是预测结果的准确性和及时性。

从技术上讲,交通流预测模型的准确性可以通过将预测的交通量与实际观测值进行比较来评估。为了公平地评估不同预测方法的性能,我们采用了三种常用的评估指标:r平方(R^2)、平均绝对误差(MAE)和均方根误差(RMSE)。

  • MAE,定义如下:

测量预测和实际交通量值之间的平均绝对偏差。它不考虑误差的方向,而是计算为预测值和实际值之间绝对差的平均值。

  • RMSE,定义如下

测量预测和实际交通量值之间的平均平方偏差的平方根。它同时考虑误差的大小和方向。

R^2,定义如下:

度量由预测值的方差所解释的实际交通量值的方差所占的比例。它用来评价预测方法得到的回归线与数据集的拟合程度。

3.3数据集

在我们的研究中,我们采用了英国高速公路部门以15分钟为间隔[30]收集的每日交通流量数据。我们选择关注高速公路的交通流量数据,因为它为我们的目的提供了几个优势。与城市道路网络中的交通流数据相比,高速公路受交通信号系统的影响较小,交通信号系统会引入交通流的短期变化。这使我们能够更准确地评估预测方法的能力

捕捉仅受时间、环境和道路网络结构等客观因素影响的长期趋势和短期波动。

在我们的实验中,我们使用了2018年2月1日至27日之间记录的交通流量数据。因此,我们有1500条训练数据和995条测试数据。所选择的交通流检测器及其信息分别如图1和表1所示。

3.4. 结果与分析

从表2所示的实验预测精度可以看出,所测试的基于ml的方法预测精度都很高,且差异很小。特别是线性回归和SVR在MAE和RMSE值较低,푅2值较高时,表现出相对较好的性能。较高的R^2值(大于0.9)表明所有模型的预测结果与实际交通流数据具有较强的相关性。

然而,应该注意的是,LSTM和GRU在这种情况下都没有表现得那么好。对这种差异的一种可能解释是,该特定位置的交通流量趋势可能有许多线性成分,这将有利于线性回归模型。为了进一步解释为什么线性回归和SVR在这种特殊情况下优于LSTM和GRU,重要的是要考虑到LSTM和GRU模型的架构旨在捕获顺序数据中的短期和长期依赖关系,使它们非常适合处理交通流数据的时间性质。

但是,如果某一特定地点的交通流量趋势主要受到线性因素的影响,例如交通量的稳定增加或减少,则更简单的线性回归模型可能更适合捕捉这些趋势并提供更准确的预测。这进一步凸显了交通流预测问题的复杂性。

由于路网中交通流特征的多样性,复杂的预测算法在计算成本和时间成本较高的情况下,不一定能保证较好的预测结果。

此外,本研究中使用的数据集规模(1500个数据点用于训练,995个数据点用于测试)也可能限制了LSTM和GRU模型有效学习和泛化的能力,因为这些模型通常需要大量数据才能充分发挥其潜力。因此,LSTM和GRU模型在这一特定情况下的表现可能并不一定反映它们在其他具有更大数据集或不同交通流特征的环境下预测交通流的真实能力。

尽管如此,所有经过测试的基于ml的方法都取得了很高的预测精度,这表明它们在类似高速公路环境下具有准确预测交通流量的潜力。

4. 大型道路网的常规方法

为了提高单点位置交通流量预测的准确性,研究人员探索了包括周围路段信息的方法。虽然来自目标交叉口的历史数据可以提供有价值的见解,但任何给定交叉口的交通流量都会受到网络中其他道路交通的影响。通过将这些附加信息合并到预测模型中,我们可以更全面地了解交通流模式,并期望与仅使用本地信息相比获得更好的性能。在本节中,我们将展示在考虑更大的道路网络作为输入时应用传统机器学习方法的结果。与第3节中描述的实验相比,预计利用这些更丰富的信息将提高以前的机器学习和深度学习方法的性能。

4.1. TFP的扩展

如前所述,结合更多的周围交通信息有可能进一步提高预测的准确性。

我们可以从一定范围内、连续时间段内相互连接的路段收集交通流数据。通过选择一个Intersection-of-Interest (IoI)及其周边푥邻近的十字路口,我们可以收集相应的交通流数据记录在这组道路段,标记为[M(t_{k-n}),M(t_{k-n+1}),...,M(t_{k})]。其中,n表示连续时刻的个数,[M(t_i)]是一个1 ×(x+1)矩阵,包含时间t_i的交通流信息。利用这些历史信息,我们可以预测该特定IoI的未来流量,表示为[L(k+1),L(k+2),...,L(t+m)]

为此,我们采用f(⋅)的预测方法,该方法仍然选择交通流数据的n连续时间步长来预测整个路网后续的m交通量。

同样,按照式(1)的格式,整个路网后续的预测m交通量可表示为:

这里,n表示连续时间步长的数量。为了与第3节的实验进行性能比较,我们将n和m设为等于1。

4.2. 数据集

在这个实验中,我们使用了与上一节实验相同时间段的英格兰高速公路交通流量数据,具体为2018年2月1日至2月27日。与之前专注于单一位置交通数据的实验不同,这个新实验旨在使用道路网络中记录的交通数据来测试我们的方法。根据前面提到的路网TFP的定义,我们选择了一个特定的路段作为利益交叉口(IoI)(在图2中称为道路a)。

随后,我们根据路网的拓扑信息识别出IoI上游的多个相连的相邻路段。在本次测试中,我们选取了相邻的6个路段,分别为B、C、D、E、F、G(如图2所示)。交通流检测器的详细位置信息如表3所示。本实验的预测间隔设定为15分钟。

4.3. 结果与分析

从表4总结的精度结果可以看出,线性回归和随机森林是使用路网中多个位置的数据预测交通流最准确的模型。与之前只考虑单一位置的检验相比,本次检验中线性回归和随机森林的MAE和RMSE值较低,R^2值较高。另一方面,SVR、决策树、LSTM和GRU模型在该测试中表现较差。有趣的是,从多个位置引入更多的信息在路网中对一些预测方法产生了负面影响,这与我们的预期相反。例如,当使用B,C,D,E,F,G的信息时,SVR的R^2降低了13.62%。

由于各种原因,向预测模型中添加更多的特性可能会对其性能产生负面影响。一种解释是,引入额外的特征可能会不经意地将噪声或不相关的信息引入模型。这种噪声可能会误导模型并导致过拟合,即模型与训练数据过于接近,从而导致对新的、看不见的数据的不良泛化。

此外,随着特征的增加,模型的复杂性也会增加。随着特征数量的增加,模型变得更加错综复杂,这使得识别数据中真正的底层模式变得具有挑战性。不相关或冗余特征的存在会混淆模型,并妨碍其准确捕获输入变量和目标变量之间相关关系的能力。

5. 所提出的方法及相应的性能演示

随着研究人员不断探索改善交通流量预测的新方法,他们开发了各种方法来利用丰富的可用信息。一种策略是从拓扑学的角度分析道路结构,并利用不同的神经网络架构。卷积神经网络(cnn)由于其出色的局部特征提取能力而成为交通流预测(TFP)的热门选择。的周期性

利用cnn的权值共享机制,可以在路网的多个位置重用交通流中的周期性特征。

此外,当考虑交通的定向流动时,有向图自然地表示了流量的方向。因此,可以利用图相关结构捕获空间交通信息,达到较高的预测精度。

正如我们前面提到的,当使用复杂的神经网络结构时,计算效率是首要考虑的问题。因此,研究人员开始关注在不增加计算需求的情况下提高交通预测的准确性。为了实现这一目标,开发了更先进的模型,包括传统模型的先进方法和混合方法。

例如,[33]提出的SFL方法结合了奇异谱分析、傅立叶分析和LSTM,在处理噪声和捕获周期特征的同时提高了流量预测精度。

混合模型也被用于减少特定路网结构的计算成本[33]。

此外,研究人员还探索了不同的数据预处理和信号处理技术,以提高交通流预测的准确性和时效性。例如,去噪算法已被应用于提高SVR等模型的精度。利用小波去噪和快速傅立叶变换提高了交通流预测的时效性,同时保持了较高的预测精度。

受这些方法的启发,我们开发了一种新的混合方法,在不增加计算资源消耗的情况下实现更准确和及时的交通流量预测。我们的方法包括分析交通网络中不同路段的交通流的时空相关性。该分析有助于我们准确地量化目标兴趣交叉口(IoI)不同路段的交通流量影响。基于这种量化的影响,我们调整了任何给定预测方法对IoI的预测结果,从而提高了其准确性。

5.1. 对建议方法的解释

假设有一条由n连续路段组成的直线道路,每条路段都有一个交通监控设备,用L_i表示,其中i= 1,2,…,n。交通流方向由左向右,如图3所示。我们的目标是根据前几段的信息,即L_1,L_2,..,L_{n-1},来预测最后一段L_n的交通流量。为了实现这一点,我们可以计算一组权重,用w_1,w_2,...,w_{n-1}表示,它测量L_1,L_2,..,L_{n-1}对目标位置L_n的影响。

然而,在现实世界中,道路网络往往更为复杂。因此,受[34]的启发,我们采用基于树的模型(见图4)来表示更复杂的道路网络。这个扩展允许我们将问题视为另一个时间序列预测问题,目标路口是L_T和记录在每个路段L_i的历史交通数据。

时间序列是连续且间隔均匀的,用t_1,t_2,..,t_n表示。我们可以利用L_1,L_2,..,L_{n-1}中交通流的푘连续时间戳信息来预测L_T中即将到来的交通流,具体的预测方法为g(⋅)。因此,我们预测函数可以表达如下:̂

这种方法建模公路网络的时间序列预测问题允许使用各种机器学习和统计模型预测交通流量。通过利用历史交通数据,我们可以开发准确的预测模型,帮助管理交通,提高交通系统的效率。

预测方法g(⋅)可以从不同角度看待。

在预测单个点的交通流量时,使用f(L_i(t-1),...,L_i(t-k+1))方法来检查目标交叉口的过去特征i,从而揭示特定路段的长期趋势。另一方面,g(⋅)用于捕捉整个路网的当前交通状况,揭示某些短期特征。g(⋅)和f(⋅)在预测单点交通流量时都是必不可少的。

为了平衡f(⋅)和g(⋅)对最终预测结果的影响,我们引入了控制参数\alpha。特别是,我们有:

5.2. 权重选择

函数g(⋅)捕获了所有道路交叉口对目标交叉口的总体影响。为了量化这种影响,我们使用权重w_1,w_2,...,w_{x}来衡量十字路口L_1,L_2,..,L_{x}对目标十字路口L_{x+1}的影响。这些权重是通过线性回归权重选择系统确定的,在本研究中采用了三种不同的方式。

1.权值相等:为简化分析,可假设每个交叉口的交通流权值相同,即交叉口权值均匀,即푤w_1=w_2=...=w_n。这个假设意味着所有的交叉点对目标位置有相同的影响L_{x+1}。通过假设相同的权重,分析变得不那么复杂,可以更有效地完成。

2. 基于速度分布选择权值:考虑到交通运动受路网拓扑和路网中每个交叉口或监测点的固定位置的约束,各交叉口交通流对目标位置的影响评估受通过各交叉口的车辆平均速度的显著影响。通过检查每个路口记录的速度数据,我们可以计算出路网上的速度分布。为此,我们可以识别上游路口在预测区间훥푡内到达目标位置L_{x+1}的车辆,并计算其平均速度。这个平均速度可以用来推导表示速度分布的相应权重。从本质上讲,权重是通过给车辆以更快的平均速度行驶的十字路口分配更多的权重来获得的,因为它们对目标位置的交通流量有更大的影响

3.根据Pearson相关性选择权重:Pearson相关系数被广泛认为是衡量两个变量之间线性相关性的最常用方法。尽管不同路口的交通流之间的关系可能不是严格的线性关系,但结合这种相关性仍然可以为选择相应的权重提供有用的信息。在图5中,我们给出了前面讨论过的所有十字路口的交通流图。值得注意的是,我们使用B,C,D,E,F和G的过去交通信息来预测A的交通流量。因此,B,C,D,E,F和G节点的流量都比A慢一个时间步。观察该图,我们可以看出,之前周围十字路口的交通流量与当前十字路口퐴的交通流量有相似的趋势。因此,可以合g(⋅)的先验相关分布。正如我们之前在第4节中讨论的那样,线性回归已经证明了最准确的结果;因此,相关性可能包含许多线性成分。考虑到这个数据集,皮尔逊相关性作为一个合适的分析案例出现。

5.3. 数据集描述

为了进行测试,我们继续使用2018年2月1日至2018年2月27日在英格兰高速公路上记录的交通流量数据。利用探测器与目标位置之间的距离,以及车辆速度的分布(见表5),我们计算了每个探测器的重量。表6总结了所选检测器及其权重的详细信息。

此外,通过Pearson分析,我们得出了探测器퐴与其他探测器之间交通信息的相关性,如表7所示。该分析使我们能够了解探测器퐴处的交通流量与其他探测器之间的关系,这有助于根据从其他探测器接收到的交通信息预测目标位置的交通流量。

5.4. 结果与分析

我们对푓和푔使用了相同的模型。我们最初通过实验推导出了参数훼,随后进行了相应的实验。结果表明,历史数据比整个路网的影响更重要。事实证明,对于所有模型,最优\alpha都大于0.5。

我们给出了等权重、基于速度分布的权重和基于相关性的方法的预测精度权重分别在表8、表9和表10中。从这些表中,我们观察到,选择相同的权重导致表8中所有模型的最高精度。

为什么使用基于速度分布的权重不能带来更好的预测精度,一个可能的解释是由于路网的复杂性和分析中使用的数据的局限性。本研究使用的数据集仅包括主要道路的交通数据,而道路网络中有许多匝道连接到主要道路。这些坡道作为车辆进入或离开主干道的入口和出口点。

坡道上的交通流量会对主干道上的交通流量产生重大影响,因为它会影响主干道上车辆的速度和行为。然而,该数据集不包括坡道上的交通流量信息,将分析限制在主要道路上的交通流量。这意味着基于速度分布计算的权重可能无法完全捕获坡道对主干道交通流的影响。

因此,基于速度分布计算的权重可能不能准确反映每个交叉口对主干道交通流的真实影响。这可能会导致使用这些权重的预测出现错误,并可能解释为什么最终的预测精度并不比基于相同权重的预测精度好。

当我们使用相关分析初始化权值时,我们本质上减少了周围交叉口对主要目标截面的影响。这个实验表明,在这种情况下,最好不要纳入先验知识,让模型充分挖掘数据的洞察力。

5.5. 与以往研究比较

总体而言,所提出的对所有交叉口使用等权的方法已被证明是有效的交通流预测方法。虽然考虑速度分布或相关性可以为相应的权重添加一些先验知识,但它可能并不总是导致更好的结果,特别是当数据集不能准确反映发散或收敛车辆对主要道路交通的影响时。

此外,该方法在分析交通流数据时提高了SVR、决策树和随机森林等非线性技术的精度。然而,线性回归的性能略差,这表明非线性技术更适合于捕获交通流数据的随机和非线性特征。

与使用所有位置数据作为单一输入相比,该方法总体上表现更好,特别是在线性回归、支持向量回归、决策树和随机森林方面。虽然LSTM和GRU具有相似的精度,但所提出方法的优势在于,当无法获得额外数据或使用这些数据可能对预测结果产生负面影响时,它能够依赖于历史信息,而不是依赖于周围的位置数据。

5.6. 进一步改善

这种方法的主要优点是我们可以为fg尝试不同的方法。如前所述,f表示历史信息对目标位置的贡献,而g表示周围位置的影响。因此,对fg应用不同的方法可能会带来更高的性能。在本应用场景中,当我们对\alpha使用SVR,对푔使用随机森林,并将훼的值设置为0.7时,混合模型的性能最好。模型的均方根误差(RMSE)为37.82,平均绝对误差(MAE)为24.04,决定系数(R^2)为0.9523。

捕捉交通流量的周期性和季节性模式对于准确预测单个路段的交通流量至关重要。周期性模式以固定的间隔发生,例如每日或每周的周期,而季节性模式指的是较长时间框架内的变化,例如假日或天气模式。我们的方法使用f来捕获这些模式,并为预测系统提供更多的时间信息。通过将历史数据纳入f,我们的模型可以识别交通流量的定期波动,并相应地调整预测。

参数g测量目标路段与周围道路之间的空间相互作用,这对于准确预测交通流量至关重要。这有助于捕捉邻近道路对目标路段流量的影响。通过将g纳入我们的模型,我们可以更好地理解道路网络中的空间相互作用,并提高预测的准确性。

总之,fg的结合提供了一种综合的方法来预测交通流量,同时考虑了时间和空间特征。fg使用不同的方法可以进一步提高预测的准确性,因为不同的模型在捕获周期性模式或空间相互作用方面可能更有效。我们的方法已证明是有效的

6. 结论

首先,我们的论文使用现实世界的数据集对传统的基于ml的交通流预测方法的性能进行了广泛的调查。然而,为了提高这些方法的精度,我们提出了一种结合历史数据和路网结构的混合方法,有效地提高了所有预测模型的适应性。在未来,我们计划引入更先进的混合模型来改进预测和评估,同时也考虑额外的数据处理技术。此外,高速公路与城市道路不同,缺少红绿灯,因此参数\alpha的选择可能会有所不同。最后,我们的目标是在未来的研究中考虑各种类型的车辆。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Deep person re-identification is the task of recognizing a person across different camera views in a surveillance system. It is a challenging problem due to variations in lighting, pose, and occlusion. To address this problem, researchers have proposed various deep learning models that can learn discriminative features for person re-identification. However, achieving state-of-the-art performance often requires carefully designed training strategies and model architectures. One approach to improving the performance of deep person re-identification is to use a "bag of tricks" consisting of various techniques that have been shown to be effective in other computer vision tasks. These techniques include data augmentation, label smoothing, mixup, warm-up learning rates, and more. By combining these techniques, researchers have been able to achieve significant improvements in re-identification accuracy. In addition to using a bag of tricks, it is also important to establish a strong baseline for deep person re-identification. A strong baseline provides a foundation for future research and enables fair comparisons between different methods. A typical baseline for re-identification consists of a deep convolutional neural network (CNN) trained on a large-scale dataset such as Market-1501 or DukeMTMC-reID. The baseline should also include appropriate data preprocessing, such as resizing and normalization, and evaluation metrics, such as mean average precision (mAP) and cumulative matching characteristic (CMC) curves. Overall, combining a bag of tricks with a strong baseline can lead to significant improvements in deep person re-identification performance. This can have important practical applications in surveillance systems, where accurate person recognition is essential for ensuring public safety.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值