有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?
Input
输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0<n<55),n的含义如题目中描述。
n=0表示输入数据的结束,不做处理。
Output
对于每个测试实例,输出在第n年的时候母牛的数量。
每个输出占一行。
Sample Input
2 4 5 0
Sample Output
2 4 6
解法一:
假设f(n)代表每一年新产生的母牛数量,那么:
f(n) = f(n - 4)(表示4年之前新产生的母牛数量,他们在n - 1年不会生产,第n年开始生产) + f(n - 1)(前一年能新生成母牛的母牛,他们今年必然能生产(其中不包括四年前生产的母牛))
基于等式f(n) = f(n - 4) + f(n - 1)
我们有:
int num_of_new_cows(int n){
if(n <= 4){
return 1;
}else{
return num_of_new_cows(n - 1) + num_of_new_cows(n - 4);
}
}
int num_of_cows(int n){
int sum = 0;
for(int i = 1;i <= n;++i){
sum += num_of_new_cows(i);
}
return sum;
}
解法二:
可以把前5天的牛的数量列出来,这样容易找到规律,也就是第n天的牛的数量等于第n-1天的加第n-3的牛的数量和。
#include <stdio.h>
int main(){
int f[50],i,n;
while(scanf("%d",&n)!=EOF)
{
f[1]=1;f[2]=2;f[3]=3;
for(i=4; i<=n;i++){
f[i]=f[i-3]+f[i-1];
}
printf("%d\n",f[n]);
}
return 0;