Python数据可视化初探——“十八般兵器”介绍

目录

  1. Matplotlib

  安装

  示例代码

  2. Seaborn

  安装

  示例代码

  3. Plotly

  安装

  示例代码(需要Jupyter Notebook或在线Plotly环境)

  4. Pandas Plotting (基于Matplotlib)

  示例代码

  5. Altair (ggplot风格)

  安装

  示例代码(需要Jupyter Notebook)


  在Python中,数据可视化是一个非常强大的工具,可以帮助你更好地理解和展示数据。Python中有许多库可以帮助你进行数据可视化,其中最流行的包括matplotlib、seaborn、plotly、pandas的plotting模块(基于matplotlib)和ggplot风格的Altair。下面我将介绍如何使用这些库来进行基本的数据可视化。

  1. Matplotlib

  matplotlib是Python中最基本的绘图库,非常灵活且功能强大。

  安装

pip install matplotlib

  示例代码

import matplotlib.pyplot as plt
 
# 数据
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]
 
# 绘图
plt.plot(x, y)
plt.title('Simple Plot')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

  2. Seaborn

  seaborn是基于matplotlib的高级绘图库,提供了更美观的统计图表。

  安装

pip install seaborn

  示例代码

import seaborn as sns
import matplotlib.pyplot as plt
 
# 数据加载(这里使用内置的tips数据集)
tips = sns.load_dataset("tips")
 
# 关系图
sns.relplot(x="total_bill", y="tip", data=tips)
plt.show()

  3. Plotly

  plotly是一个交互式图表库,支持多种图表类型,包括3D图表。

  安装

pip install plotly

  示例代码(需要Jupyter Notebook或在线Plotly环境)

import plotly.express as px
 
# 数据加载(这里使用内置的tips数据集)
df = px.data.tips()
 
# 散点图
fig = px.scatter(df, x='total_bill', y='tip', color='day')
fig.show()

  4. Pandas Plotting (基于Matplotlib)

  Pandas的.plot()方法基于matplotlib,可以直接在DataFrame或Series上使用。

  示例代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
 
# 数据创建
data = {'Year': [2010, 2011, 2012, 2013, 2014], 'Value': [10, 15, 7, 17, 22]}
df = pd.DataFrame(data)
 
# 绘图并显示(默认是线图)
df.plot(x='Year', y='Value')
plt.show()

  5. Altair (ggplot风格)

  Altair是一个声明式的统计可视化库,灵感来源于R语言的ggplot2。它非常适合于Jupyter Notebook。

  安装

pip install altair vega_datasets

  示例代码(需要Jupyter Notebook)

import altair as alt
from vega_datasets import data
 
# 数据加载(使用内置的cars数据集)
cars = data.cars()
cars['Origin'] = pd.Categorical(cars['Origin'], categories=['USA', 'Europe', 'Japan'], ordered=True)  # 设置类别顺序
 
# 条形图示例
alt.Chart(cars).mark_bar().encode(x='Origin:N', y='mean(Miles_per_Gallon):Q')  # N代表名义类型,Q代表量化类型。  # 使用Vega-Lite语法进行编码。  # .properties(width=600, height=400)  # 可选:设置图表大小。  # .interactive()  # 可选:使图表交互式。  # .configure_facet(spacing=10)  # 可选:配置分面图表的间距。  # .configure_title(fontSize=14, font='Courier New')  # 可选:配置标题样式。  # .configure_axis(labelFontSize=12, titleFontSize=14)  # 可选:配置轴样式。  # .configure_legend(labelFontSize=12, titleFontSize=14)  # 可选:配置图例样式。

  这节课比较简单,就是给大家介绍一下Python实现数据可视化的一些技术手段和主要模块,接下来,我将详细给大家讲授一下这些内容的具体细节,帮助大家更好的掌握这些知识点,在数据分析,人工智能等方面能够娴熟的运用这些工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波涛浪子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值