用Python玩转人工智能——数字识别技术 之三

目录

  MNIST 数据集模型训练与结果观察课程

  一、课程目标

  二、模型训练

  (一)训练循环详解

  (二)学习率调整策略

  (三)过拟合与欠拟合处理

  三、观察模型预测结果

  (一)计算准确率

  (二)混淆矩阵分析

  (三)可视化预测样本

  四、课程系统总结

  MNIST 数据集模型训练与结果观察课程

  一、课程目标

  本次课程旨在让学员深入掌握 MNIST 数据集下神经网络模型的训练过程,学会通过多种方式观察模型预测结果,并能综合前三节课知识,对 MNIST 数据集处理、模型构建与训练形成完整认知,提升模型调优和分析能力。

  二、模型训练

  (一)训练循环详解

  在模型训练中,训练循环是核心流程。它通过多次迭代训练数据,逐步调整模型参数以降低损失。一个典型的训练循环包含以下步骤:

  1. 数据加载:从数据加载器(如 PyTorch 中的DataLoader)获取一批数据,包括输入图像和对应的真实标签。
  2. 前向传播:将输入数据传入模型,经过各层计算得到预测结果。
  3. 计算损失:使用损失函数(如交叉熵损失函数)计算预测结果与真实标签之间的差异。
  4. 反向传播:根据损失值,利用链式法则计算损失函数对模型各参数的梯度。
  5. 参数更新:优化器(如随机梯度下降 SGD、Adam 等)根据计算得到的梯度和设定的学习率,更新模型参数。
  6. 损失记录:记录每一批次的损失值,用于监控训练过程。

  以下是基于 PyTorch 的训练循环代码示例:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms

# 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 定义模型
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        return x

model = SimpleNet()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = op
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波涛浪子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值