目录
四、课程系统总结
MNIST 数据集模型训练与结果观察课程
一、课程目标
本次课程旨在让学员深入掌握 MNIST 数据集下神经网络模型的训练过程,学会通过多种方式观察模型预测结果,并能综合前三节课知识,对 MNIST 数据集处理、模型构建与训练形成完整认知,提升模型调优和分析能力。
二、模型训练
(一)训练循环详解
在模型训练中,训练循环是核心流程。它通过多次迭代训练数据,逐步调整模型参数以降低损失。一个典型的训练循环包含以下步骤:
- 数据加载:从数据加载器(如 PyTorch 中的DataLoader)获取一批数据,包括输入图像和对应的真实标签。
- 前向传播:将输入数据传入模型,经过各层计算得到预测结果。
- 计算损失:使用损失函数(如交叉熵损失函数)计算预测结果与真实标签之间的差异。
- 反向传播:根据损失值,利用链式法则计算损失函数对模型各参数的梯度。
- 参数更新:优化器(如随机梯度下降 SGD、Adam 等)根据计算得到的梯度和设定的学习率,更新模型参数。
- 损失记录:记录每一批次的损失值,用于监控训练过程。
以下是基于 PyTorch 的训练循环代码示例:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 定义模型
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
model = SimpleNet()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = op