数据科学和机器学习的“看家兵器”——pandas模块 之二

目录

  pandas 模块介绍

  4.2 pandas 数据读取

  4.2.1 课程目标

  4.2.2 读取 Excel 文件中的数据

  (一)读取某个工作表中的数据

  (二)读取指定数据列的标签内容

  (三)读取指定数据行的标签内容

  (四)读取指定行或者列

  4.2.3、读取 CSV 文件数据

  4.2.4、课程总结回顾

  4.2.5、课后练习题


  

  pandas 模块介绍

  pandas 是 Python 的一个开源数据分析库,为 Python 提供了高性能、易用的数据结构和数据分析工具。它建立在 NumPy 之上,使得以 NumPy 为中心的应用变得更加简单。pandas 的名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。

  pandas 的主要数据结构是 Series(一维数组)和 DataFrame(二维表格型数据结构),它们能够处理各种类型的数据,无论是时间序列数据、表格数据还是矩阵数据。pandas 提供了高级数据操作功能,包括数据清洗、合并、重塑、聚合和时间序列分析等。它广泛应用于金融、经济、统计、社会科学等领域,是数据科学和机器学习工作流程中不可或缺的工具。

  4.2 pandas 数据读取

  4.2.1 课程目标

  本次课程主要围绕 pandas 的数据读取功能展开,通过理论讲解和案例分析,让同学们掌握从 Excel 和 CSV 文件中读取数据的方法和技巧。同学们学完本次课程后,能够熟练使用 pandas 进行不同格式数据的读取和基本处理。

  4.2.2 读取 Excel 文件中的数据

  pandas 提供了强大而灵活的 Excel 文件读取功能,可以读取整个工作表、指定的行列数据等。下面将详细介绍这些功能并通过案例演示。

  (一)读取某个工作表中的数据

  在 Excel 文件中,可能包含多个工作表。pandas 的read_excel()函数可以通过sheet_name参数指定要读取的工作表。

import pandas as pd

# 读取Excel文件
# 实际使用时,请替换为你的文件路径
# excel_file = pd.ExcelFile('path_to_your_excel_file.xlsx')

# 为了演示,我们创建一个示例Excel文件
data = {
    '姓名': ['张三', '李四', '王五', '赵六', '钱七'],
    '年龄': [25, 30, 28, 35, 40],
    '性别': ['男', '女', '男', '女', '男'],
    '职业': ['工程师', '教师', '医生', '律师', '经理'],
    '收入': [8000, 6500, 12000, 15000, 20000]
}

# 创建DataFrame
df = pd.DataFrame(data)

# 将DataFrame写入Excel文件
df.to_excel('example.xlsx', sheet_name='Sheet1', index=False)

# 读取Excel文件
excel_file = pd.ExcelFile('example.xlsx')

# 获取指定工作表中的数据
df = excel_file.parse('Sheet1')

# 查看数据的基本信息
print('数据基本信息:')
df.info()

# 查看数据集行数和列数
rows, columns = df.shape

# 查看数据集行数和列数
if rows < 10 and columns < 10:
    # 短表数据(行数少于10且列数少于10)查看全量数据信息
    print("\n数据全部内容信息:")
    print(df.to_csv(sep='\t', na_rep='nan'))
else:
    # 长表数
这篇笔记主要介绍了Pandas模块的基本操作使用方法。PandasPython中一个用于数据分析处理的常用库,提供了高效的数据结构数据分析工具,是进行数据处理数据挖掘的重要工具之一。 一、Pandas数据结构 Pandas主要有两种数据结构:SeriesDataFrame。 1. Series Series是一种类似于一维数组的对象,由一组数据一组与之相关的标签(即索引)组成。Series的创建方式如下: ```python import pandas as pd # 通过列表创建Series s = pd.Series([1, 3, 5, np.nan, 6, 8]) # 通过字典创建Series s = pd.Series({'a': 1, 'b': 2, 'c': 3}) ``` 2. DataFrame DataFrame是一种二维表格数据结构,由一组数据一组行索引列索引组成。DataFrame的创建方式有很多种,最常用的是通过字典创建。例如: ```python import pandas as pd data = {'name': ['Tom', 'Jerry', 'Mike'], 'age': [18, 20, 22], 'gender': ['M', 'M', 'F']} df = pd.DataFrame(data) ``` 二、Pandas的基本操作 1. 数据读取 Pandas可以读取多种格式的数据文件,如CSV、Excel、SQL等。常用的读取CSV文件的方式如下: ```python import pandas as pd df = pd.read_csv('data.csv') ``` 2. 数据预处理 数据预处理是数据挖掘中非常重要的一部分,Pandas提供了很多方便的函数方法来进行数据清洗转换。常用的数据预处理函数方法有: - 处理缺失值 ```python # 判断是否存在缺失值 df.isnull() # 删除缺失值 df.dropna() # 填充缺失值 df.fillna(value) ``` - 处理重复值 ```python # 删除重复值 df.drop_duplicates() ``` - 数据转换 ```python # 数据类型转换 df.astype() # 数据替换 df.replace() ``` 3. 数据分析 Pandas提供了各种数据分析处理的方法函数,常用的包括: - 统计函数 ```python # 计算平均值 df.mean() # 计算标准差 df.std() # 计算最大值最小值 df.max(), df.min() ``` - 排序 ```python # 按照某列排序 df.sort_values(by='column_name') ``` - 数据聚合 ```python # 对某列数据进行分组求 df.groupby('column_name').sum() ``` 以上是Pandas模块的基础内容,还有很多高级用法技巧需要进一步学习掌握。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波涛浪子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值