0105极限的运算法则-函数与极限

前言

​ 记号 lim ⁡ \lim lim下面没有标明自变量的变化过程,表示下面定理对 x → x 0 x\to x_0 xx0 x → ∞ x\to\infty x都是成立的。证明时以 x → x 0 x\to x_0 xx0为例, x → ∞ x\to\infty x情况,自行证明。

定理1-无穷小的和

定理1:两个无穷小的和是无穷小。

证明:以 x → x 0 x\to x_0 xx0为例
设 α 及 β 是当 x → x 0 时的无穷小,而 γ = α + β 因为 α 是当 x → x 0 时的无穷小,所以 ∀ ϵ > 0 , ∃ δ 1 > 0 , 当 0 < ∣ x − x 0 ∣ < δ 1 时,有 ∣ α ∣ < ϵ 2 因为 β 是当 x → x 0 时的无穷小,所以 ∀ ϵ 2 > 0 , ∃ δ 2 > 0 , 当 0 < ∣ x − x 0 ∣ < δ 2 时,有 ∣ β ∣ < ϵ 2 取 δ = min ⁡ { δ 1 , δ 2 } ,则当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ γ ∣ = ∣ α + β ∣ ≤ ∣ α ∣ + ∣ β ∣ < ϵ 2 + ϵ 2 = ϵ 所以 γ 也是当 x → x 0 时的无穷小。 设\alpha及\beta是当x\to x_0时的无穷小,而 \\ \gamma = \alpha + \beta \\ 因为\alpha是当x\to x_0时的无穷小,所以\forall\epsilon\gt 0,\exists\delta_1\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta_1时,有 \\ \lvert\alpha\rvert\lt \frac{\epsilon}{2} \\ 因为\beta是当x\to x_0时的无穷小,所以\forall\frac{\epsilon}{2}\gt 0,\exists\delta_2\gt 0,当0\lt\lvert x-x_0\rvert\lt\delta_2时,有 \\ \lvert\beta\rvert\lt \frac{\epsilon}{2} \\ 取\delta=\min\{\delta_1,\delta_2\},则当0\lt\lvert x-x_0\rvert\lt\delta时,有 \\ \lvert\gamma\rvert=\lvert\alpha+\beta\rvert\le\lvert\alpha\rvert+\lvert\beta\rvert\lt\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \\ 所以\gamma也是当x\to x_0时的无穷小。 αβ是当xx0时的无穷小,而γ=α+β因为α是当xx0时的无穷小,所以ϵ>0,δ1>0,0<xx0<δ1时,有α<2ϵ因为β是当xx0时的无穷小,所以2ϵ>0,δ2>0,0<xx0<δ2时,有β<2ϵδ=min{δ1,δ2},则当0<xx0<δ时,有γ=α+βα+β<2ϵ+2ϵ=ϵ所以γ也是当xx0时的无穷小。

用数学归纳法可证:有限个无穷小之和也是无穷小。

定理2-无穷小的乘积

定理2:有界函数和无穷小的乘积是无穷小。

证明:以 x → x 0 x\to x_0 xx0为例
设函数 u 在 x 0 的某一去心邻域 U ∘ ( x 0 , δ 1 ) 内是有界的,即 ∃ M > 0 , 当 x ∈ U ∘ ( x 0 , δ 1 ) , 有 ∣ f ( x ) ∣ ≤ M 又设 α 是当 x → x 0 时的无穷小,即 ∀ ϵ > 0 , ∃ δ 2 > 0 , 当 x ∈ U ∘ ( x 0 , δ 2 ) 时,有 ∣ α ∣ < ϵ M 取 δ = min ⁡ { δ 1 , δ 2 } ,则 ∣ u δ ∣ = ∣ u ∣ ⋅ ∣ δ ∣ < M ⋅ ϵ M = ϵ , 说以 u α 也是当 x → x 0 时的无穷小。 设函数u在x_0的某一去心邻域\overset{\circ}{U}(x_0,\delta_1)内是有界的,即 \\ \exists M\gt 0,当x\in \overset{\circ}{U}(x_0,\delta_1),有 \\ |f(x)|\le M \\ 又设\alpha是当x\to x_0时的无穷小,即 \\ \forall \epsilon\gt0,\exists\delta_2\gt0,当x\in \overset{\circ}{U}(x_0,\delta_2)时,有 \\ |\alpha|\lt\frac{\epsilon}{M} \\ 取\delta=\min\{\delta_1,\delta_2\},则 \\ |u\delta|=|u|\cdot|\delta|\lt M\cdot \frac{\epsilon}{M}=\epsilon, \\ 说以u\alpha也是当x\to x_0时的无穷小。 设函数ux0的某一去心邻域U(x0,δ1)内是有界的,即M>0,xU(x0,δ1),f(x)M又设α是当xx0时的无穷小,即ϵ>0,δ2>0,xU(x0,δ2)时,有α<Mϵδ=min{δ1,δ2},则uδ=uδ<MMϵ=ϵ说以也是当xx0时的无穷小。

推论1:常数与无穷小的乘积是无穷小。

推论2:有限个无穷小的乘积是无穷小。

定理3-函数极限四则运算

定理3:如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim f(x)=A,\lim g(x)=B limf(x)=A,limg(x)=B,那么

(1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim[f(x)\pm g(x)]=\lim f(x)\pm\lim g(x)=A\pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

(2) l i m [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B lim[f(x)\cdot g(x)]=\lim f(x)\cdot\lim g(x)=A\cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB

(3) 若又有 B ≠ 0 B\neq 0 B=0,则 lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B \lim\frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{A}{B} limg(x)f(x)=limg(x)limf(x)=BA

证明,这里只给出(3)的证明
因为 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B , 所以 f ( x ) = A + α , g ( x ) = B + β , 其中 α , β 是无穷小 设 γ = f ( x ) g ( x ) − A B ,则 γ = A + α B + β − A B = 1 B ( B + β ) ⋅ ( B α − A β ) 由定理 1 , 2 可得 B α − A β 是无穷小 根据函数极限性质定理 3 ′ ,由于 lim ⁡ g ( x ) = B ≠ 0 , 存在 x 0 某一去心邻域 U ∘ ( x 0 ) , 当 x ∈ U ∘ ( x 0 ) 时,有 ∣ g ( x ) ∣ > ∣ B ∣ 2 , 即 1 g ( x ) = 1 ( B + β ) < 2 ∣ B ∣ ,则 ∣ 1 B ( B + β ) ∣ < 1 ∣ B ∣ ⋅ 2 ∣ B ∣ = 2 B 2 ,则 γ 为有界函数和无穷小的乘积,也无无穷小,则 f ( x ) g ( x ) = A B + γ , 则 lim ⁡ f ( x ) g ( x ) = A B = lim ⁡ f ( x ) lim ⁡ g ( x ) 因为 \lim f(x)=A,\lim g(x)=B, \\ 所以 f(x)=A+\alpha,g(x)=B+\beta, \\ 其中\alpha,\beta是无穷小 \\ 设 \gamma = \frac{f(x)}{g(x)} - \frac AB ,则 \\ \gamma = \frac{A+\alpha}{B+\beta} - \frac AB = \frac{1}{B(B+\beta)}\cdot(B\alpha-A\beta) \\ 由定理1,2可得B\alpha-A\beta是无穷小 \\ 根据函数极限性质定理3^{'},由于\lim g(x)=B\neq 0,存在x_0某一去心邻域\overset{\circ}{U}(x_0),当x\in \overset{\circ}{U}(x_0)时,有 \\ |g(x)|\gt\frac{|B|}{2} ,即 \frac{1}{g(x)}=\frac{1}{(B+\beta)}\lt\frac{2}{|B|}, 则 \\ |\frac{1}{B(B+\beta)}|\lt\frac{1}{|B|}\cdot\frac{2}{|B|}=\frac{2}{B^2} ,则 \\ \gamma为有界函数和无穷小的乘积,也无无穷小,则 \\ \frac{f(x)}{g(x)} = \frac AB + \gamma ,则 \\ \lim\frac{f(x)}{g(x)}=\frac{A}{B}=\frac{\lim f(x)}{\lim g(x)} 因为limf(x)=A,limg(x)=B,所以f(x)=A+αg(x)=B+β其中α,β是无穷小γ=g(x)f(x)BA,则γ=B+βA+αBA=B(B+β)1(BαAβ)由定理1,2可得BαAβ是无穷小根据函数极限性质定理3,由于limg(x)=B=0,存在x0某一去心邻域U(x0),xU(x0)时,有g(x)>2B,g(x)1=(B+β)1<B2,则B(B+β)1<B1B2=B22,则γ为有界函数和无穷小的乘积,也无无穷小,则g(x)f(x)=BA+γ,limg(x)f(x)=BA=limg(x)limf(x)

推论1:如果 l i m f ( x ) lim f(x) limf(x)存在,而 c c c为常数,那么

lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim[cf(x)]=c\lim f(x) lim[cf(x)]=climf(x)

推论2:如果\lim f(x)存在,而 n n n是正整数,那么

lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim[f(x)]^n=[\lim f(x)]^n lim[f(x)]n=[limf(x)]n

定理4-数列极限四则运算

设有数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn},如果 lim ⁡ n → ∞ x n = A , lim ⁡ n → ∞ y n = B \lim\limits_{n\to\infty}x_n=A,\lim\limits_{n\to\infty}y_n=B nlimxn=A,nlimyn=B,那么

(1) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim\limits_{n\to\infty}(x_n\pm y_n)=A\pm B nlim(xn±yn)=A±B

(2) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim\limits_{n\to\infty}(x_n\cdot y_n)=A\cdot B nlim(xnyn)=AB

(3) 当 y n ≠ 0 ( n = 1 , 2 , … ) y_n\neq 0(n=1,2,\ldots) yn=0(n=1,2,) B ≠ 0 B\neq 0 B=0时, lim ⁡ n → ∞ x n y n = A B \lim\limits_{n\to\infty}\frac{x_n}{y_n}=\frac AB nlimynxn=BA

定理5

定理5: 如果, ϕ ( x ) ≥ ψ ( x ) , 而 lim ⁡ ϕ ( x ) = A , lim ⁡ ψ ( x ) = B , 那么 A ≥ B 如果,\phi(x)\ge\psi(x),而\lim\phi(x)=A,\lim\psi(x)=B,那么A\ge B 如果,ϕ(x)ψ(x),limϕ(x)=A,limψ(x)=B,那么AB

证明:
设 f ( x ) = ϕ ( x ) − ψ ( x ) , 则 f ( x ) ≥ 0 由定理 3 得, lim ⁡ f ( x ) = lim ⁡ [ ϕ ( x ) − ψ ( x ) ] = A − B f ( x ) ≥ 0 , 由极限性质定理 3 推论得 lim ⁡ f ( x ) ≥ 0 即 A − B ≥ 0 , A ≥ B 设f(x)=\phi(x)-\psi(x),则 f(x)\ge 0 \\ 由定理3得,\lim f(x)=\lim[\phi(x)-\psi(x)]=A-B \\ f(x)\ge 0,由极限性质定理3推论得 \lim f(x)\ge0 即 \\ A-B\ge 0,A\ge B f(x)=ϕ(x)ψ(x),f(x)0由定理3得,limf(x)=lim[ϕ(x)ψ(x)]=ABf(x)0,由极限性质定理3推论得limf(x)0AB0,AB

总结,当 a 0 ≠ 0 , b 0 ≠ 0 , m 和 n 都为非负整数时,有 总结,当a_0\neq 0,b_0\neq 0,m和n都为非负整数时,有 总结,当a0=0,b0=0,mn都为非负整数时,有

lim ⁡ x → ∞ a 0 x m + a 1 x m − 1 + ⋯ + a m b 0 x n + b 1 x n − 1 + ⋯ + b n = { 0 , 当 n > m a 0 b 0 , 当 n = m ∞ , 当 n < m \lim\limits_{x\to\infty}\frac{a_0x^m+a_1x^{m-1}+\cdots+a_m}{b_0x^n+b_1x^{n-1}+\cdots+b_n}=\begin{cases} 0,当n\gt m \\ \frac{a_0}{b_0}, 当n=m \\ \infty,当n\lt m\end{cases} xlimb0xn+b1xn1++bna0xm+a1xm1++am= 0,n>mb0a0,n=m,n<m

定理6-复合函数的极限运算法则

定理6(复合函数的极限运算法则):设函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]是有函数 u = g ( x ) u=g(x) u=g(x)与函数 y = f ( u ) y=f(u) y=f(u)复合而成, f [ g ( x ) ] f[g(x)] f[g(x)]在点 x 0 x_0 x0的某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\to x_0}g(x)=u_0,\lim\limits_{u\to u_0}f(u)=A xx0limg(x)=u0,uu0limf(u)=A,存在 δ 0 > 0 \delta_0\gt 0 δ0>0,当 x ∈ U ∘ ( x 0 , δ 1 ) x\in \overset{\circ}{U}(x_0,\delta_1) xU(x0,δ1)时,有 g ( x ) ≠ u 0 g(x)\neq u_0 g(x)=u0,则

lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\to x_0}f[g(x)]=\lim\limits_{u\to u_0}f(u)=A xx0limf[g(x)]=uu0limf(u)=A

证明:
lim ⁡ u → u 0 f ( u ) = A ,即 ∀ ϵ > 0 , ∃ ψ > 0 , 当 0 < ∣ u − u 0 ∣ < ψ 时,有 ∣ f ( u ) − A ∣ < ϵ 因为 lim ⁡ x → x 0 g ( x ) = u 0 , 对于上述 ψ , ∃ δ 1 > 0 , 当 0 < ∣ x − x 0 ∣ < δ 1 时,有 ∣ g ( x ) − u 0 ∣ < ψ 由假设当 x ∈ U ∘ ( x 0 , δ 0 ) 时, g ( x ) ≠ u 0 取 δ = min ⁡ ( δ 0 , δ 1 ) , 则当 0 < ∣ x − x 0 ∣ < δ 时, { ∣ g ( x ) − u 0 ∣ ≠ 0 ∣ g ( x ) − u 0 ∣ < ψ 同时成立,即 0 < ∣ g ( x ) − u 0 ∣ < ψ , 所以 ∣ f [ g ( x ) ] − A ∣ = ∣ f ( u ) − A ∣ < ϵ 即 lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = A \lim\limits_{u\to u_0}f(u)=A ,即 \\ \forall\epsilon\gt 0,\exist\psi\gt 0,当0\lt|u-u_0|\lt\psi时,有 \\ |f(u)-A|\lt \epsilon \\ 因为\lim\limits_{x\to x_0}g(x)=u_0,对于上述\psi,\exist\delta_1>0,当0\lt|x-x_0|\lt\delta_1时,有 \\ |g(x)-u_0|\lt \psi \\ 由假设 当x\in \overset{\circ}{U}(x_0,\delta_0)时,g(x)\neq u_0 \\ 取\delta=\min(\delta_0,\delta_1),则当0\lt|x-x_0|\lt\delta时, \\ \begin{cases} |g(x)-u_0|\neq 0 \\ |g(x)-u_0|\lt \psi \end{cases} 同时成立,即 0\lt|g(x)-u_0|\lt\psi, \\ 所以 |f[g(x)]-A|=|f(u)-A|\lt \epsilon 即\\ \lim\limits_{x\to x_0}f[g(x)]=\lim\limits_{u\to u_0}f(u)=A uu0limf(u)=A,即ϵ>0,ψ>0,0<uu0<ψ时,有f(u)A<ϵ因为xx0limg(x)=u0,对于上述ψ,δ1>0,0<xx0<δ1时,有g(x)u0<ψ由假设当xU(x0,δ0)时,g(x)=u0δ=min(δ0,δ1),则当0<xx0<δ时,{g(x)u0=0g(x)u0<ψ同时成立,即0<g(x)u0<ψ,所以f[g(x)]A=f(u)A<ϵxx0limf[g(x)]=uu0limf(u)=A

后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值