0106极限存在准则两个重要的极限-函数与极限

1 夹逼准则

准则1:如果数列 { x n } \{x_n\} {xn}, { y n } \{y_n\} {yn} { z n } \{z_n\} {zn}满足以下条件:

(1)从某项起,即 ∃ n 0 ∈ N + , 当 n > n 0 时,有 y n ≤ x n ≤ z n \exist n_0\in N_+,当n\gt n_0时,有 y_n\le x_n\le z_n n0N+,n>n0时,有ynxnzn

(2) lim ⁡ n → ∞ y n = a , lim ⁡ n → ∞ z n = a \lim\limits_{n\to\infty}y_n=a,\lim\limits_{n\to\infty}z_n=a nlimyn=a,nlimzn=a

那么数列 { x n } \{x_n\} {xn}的极限存在,且 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a

证明:
因为 lim ⁡ n → ∞ y n = a ,所以 ∀ ϵ > 0 , ∃ N 1 ∈ N + , 当 n > N 1 时,有 ∣ y n − a ∣ < ϵ 因为 lim ⁡ n → ∞ z n = a ,所以对于上述 ϵ , ∃ N 2 ∈ N + , 当 n > N 2 时,有 ∣ z n − a ∣ < ϵ 又因为 ∃ n 0 ∈ N + , 当 n > n 0 时,有 y n ≤ x n ≤ z n 取 N = max ⁡ ( n 0 , N 1 , N 2 ) , 则当 n > N 时,有 ∣ y n − a ∣ < ϵ ∣ z n − a ∣ < ϵ y n ≤ x n ≤ z n 即 a − ϵ < y n < a + ϵ a − ϵ < z n < a + ϵ y n ≤ x n ≤ z n 即 a − ϵ < y n ≤ x n ≤ z n < a + ϵ 即 ∣ x n − a ∣ < ϵ 所以 lim ⁡ n → ∞ x n = a 因为\lim\limits_{n\to\infty}y_n=a ,所以 \forall\epsilon\gt 0,\exists N_1\in N_+,当n\gt N_1时,有|y_n-a|\lt\epsilon \\ 因为\lim\limits_{n\to\infty}z_n=a ,所以 对于上述\epsilon,\exists N_2\in N_+,当n\gt N_2时,有|z_n-a|\lt\epsilon \\ 又因为\exist n_0\in N_+,当n\gt n_0时,有 y_n\le x_n\le z_n \\ 取N=\max(n_0,N_1,N_2),则当n\gt N时,有 |y_n-a|\lt\epsilon\quad|z_n-a|\lt\epsilon\quad y_n\le x_n\le z_n \\ 即 a-\epsilon\lt y_n\lt a+\epsilon\quad a-\epsilon\lt z_n\lt a+\epsilon\quad y_n\le x_n\le z_n \\ 即a-\epsilon\lt y_n\le x_n\le z_n\lt a+\epsilon \\ 即|x_n-a|\lt\epsilon \\ 所以\lim\limits_{n\to\infty}x_n=a 因为nlimyn=a,所以ϵ>0,N1N+,n>N1时,有yna<ϵ因为nlimzn=a,所以对于上述ϵ,N2N+,n>N2时,有zna<ϵ又因为n0N+,n>n0时,有ynxnznN=max(n0,N1,N2),则当n>N时,有yna<ϵzna<ϵynxnznaϵ<yn<a+ϵaϵ<zn<a+ϵynxnznaϵ<ynxnzn<a+ϵxna<ϵ所以nlimxn=a

准则 1 ′ 1' 1 :如果

(1)当 x ∈ U ∘ ( x 0 , r ) ( 或 ∣ x ∣ > M ) x\in\overset\circ U(x_0,r)(或|x|\gt M) xU(x0,r)(x>M)时, g ( x ) ≤ f ( x ) ≤ h ( x ) g(x)\le f(x)\le h(x) g(x)f(x)h(x)

(2) lim ⁡ x → x 0 g ( x ) = A , lim ⁡ x → x 0 h ( x ) = A 或者 lim ⁡ x → ∞ g ( x ) = A , lim ⁡ x → ∞ h ( x ) = A \lim\limits_{x\to x_0}g(x)=A,\lim\limits_{x\to x_0}h(x)=A或者\lim\limits_{x\to\infty}g(x)=A,\lim\limits_{x\to\infty}h(x)=A xx0limg(x)=A,xx0limh(x)=A或者xlimg(x)=A,xlimh(x)=A

那么 lim ⁡ x → x 0 f ( x ) 或者 lim ⁡ x → ∞ f ( x ) 存在,且等于 A \lim\limits_{x\to x_0}f(x)或者\lim\limits_{x\to\infty}f(x)存在,且等于A xx0limf(x)或者xlimf(x)存在,且等于A

准则1和准则 1 ′ 1' 1 称为夹逼准则。

  • 适用:n项和的数列求极限

2 lim ⁡ x → 0 sin ⁡ x x \lim\limits_{x\to 0}\frac{\sin x}{x} x0limxsinx

利用上面的夹逼准则,我们来证明 lim ⁡ x → 0 sin ⁡ x x \lim\limits_{x\to 0}\frac{\sin x}{x} x0limxsinx极限存在并求出极限。

证明,如图2-1所示单位圆:在这里插入图片描述

设圆心角 ∠ A O B = x , 0 < x < π 2 , 则 sin ⁡ x = A C O A = A C , x = 弧 A B , 且 S △ A O B < S 扇形 O A B < S △ O D B 即, sin ⁡ x 2 < x 2 < tan ⁡ x 2 , 整理得 cos ⁡ x < sin ⁡ x x < 1 ( 6 − 1 ) 当 − π 2 < x < 0 时, cos ⁡ x 与 sin ⁡ x x 都不变,所以当 0 < ∣ x ∣ < π 2 时,不等式 6 − 1 都成立 当 0 < ∣ x ∣ < π 2 时,有 0 < ∣ 1 − cos ⁡ x ∣ = 1 − cos ⁡ x = 2 sin ⁡ 2 x 2 < 2 ( x 2 ) 2 = x 2 2 即 0 < 1 − cos ⁡ x < x 2 2 当 x → 0 时, x 2 2 → 0 , 由准则 I ′ 有 lim ⁡ x → 0 cos ⁡ x = 1 所以有不等式 6 − 1 和准则 I ′ 有 lim ⁡ x → 0 sin ⁡ x x = 1 设圆心角\angle AOB=x,0\lt x\lt \frac{\pi}{2} ,则 \\ \sin x=\frac{AC}{OA}=AC,x=弧{AB},且S_{\triangle AOB}\lt S_{扇形OAB}\lt S_{\triangle ODB}\quad 即,\\ \frac{\sin x}{2}\lt\frac{x}{2}\lt\frac{\tan x}{2} ,整理得 \\ \cos x\lt\frac{\sin x}{x}\lt 1\quad (6-1) \\ 当-\frac{\pi}{2}\lt x\lt 0时,\cos x与\frac{\sin x}{x}都不变,所以当0\lt|x|\lt\frac{\pi}{2}时,不等式6-1都成立 \\ 当0\lt|x|\lt\frac{\pi}{2}时,有0\lt|1-\cos x|=1-\cos x=2\sin^2{\frac{x}{2}}\lt2(\frac{x}{2})^2=\frac{x^2}{2} 即\\ 0\lt1-\cos x\lt \frac{x^2}{2} \\ 当x\to 0时,\frac{x^2}{2}\to 0,由准则I'有\lim\limits_{x\to 0}\cos x = 1 \\ 所以有不等式6-1和准则I'有 \\ \lim\limits_{x\to 0}\frac{\sin x}{x} = 1 设圆心角AOB=x0<x<2π,sinx=OAAC=AC,x=AB,SAOB<S扇形OAB<SODB即,2sinx<2x<2tanx,整理得cosx<xsinx<1(61)2π<x<0时,cosxxsinx都不变,所以当0<x<2π时,不等式61都成立0<x<2π时,有0<∣1cosx=1cosx=2sin22x<2(2x)2=2x20<1cosx<2x2x0时,2x20,由准则Ix0limcosx=1所以有不等式61和准则Ix0limxsinx=1
sin ⁡ x x \frac{\sin x}{x} xsinx的图像2-2,:在这里插入图片描述

lim ⁡ x → 0 sin ⁡ x x = lim ⁡ x → 0 tan ⁡ x x = lim ⁡ x → 0 arcsin ⁡ x x = 1 \lim\limits_{x\to 0}\frac{\sin x}{x}=\lim\limits_{x\to 0}\frac{\tan x}{x}=\lim\limits_{x\to 0}\frac{\arcsin x}{x}=1 x0limxsinx=x0limxtanx=x0limxarcsinx=1

推广:若 lim ⁡ f ( x ) = 0 ,则 lim ⁡ sin ⁡ f ( x ) f ( x ) = 0 \lim f(x)=0,则\lim \frac{\sin f(x)}{f(x)}=0 limf(x)=0,则limf(x)sinf(x)=0

证明:以 x → x 0 为例 x\to x_0为例 xx0为例
令 t = f ( x ) ,则当 x → x 0 时,有 t → 0 则 lim ⁡ x → x 0 sin ⁡ f ( x ) f ( x ) = lim ⁡ t → 0 sin ⁡ t t = 1 令t = f(x),则当x\to x_0时,有t\to 0 则\\ \lim\limits_{x\to x_0}\frac{\sin f(x)}{f(x)}=\lim\limits_{t\to 0}\frac{\sin t}{t}=1 t=f(x),则当xx0时,有t0xx0limf(x)sinf(x)=t0limtsint=1

3 准则二

准则II:单调有界数列必有极限。

如果数列 { x n } \{x_n\} {xn}满足条件: x 1 ≤ x 2 ≤ x 3 ≤ ⋯ ≤ x n ≤ x n + 1 ≤ ⋯ x_1\le x_2\le x_3\le\cdots\le x_n\le x_{n+1}\le\cdots x1x2x3xnxn+1

就称数列 { x n } \{x_n\} {xn}是单调增加的;如果数列 { x n } \{x_n\} {xn}满足条件

x 1 ≥ x 2 ≥ x 3 ≥ ⋯ ≥ x n ≥ x n + 1 ≥ ⋯ x_1\ge x_2\ge x_3\ge\cdots\ge x_n\ge x_{n+1}\ge\cdots x1x2x3xnxn+1

就称数列 { x n } \{x_n\} {xn}是单调减少的。单调增加和单调减少的数列通常为单调数列。

单调有界定理是数列收敛的充分条件。

例1. 证明数列 2 , 2 + 2 , 2 + 2 + 2 , ⋯ \sqrt 2,\sqrt{2+\sqrt 2}, \sqrt{2+\sqrt {2+\sqrt 2}},\cdots 2 ,2+2 ,2+2+2 ,极限存在,并求出其极限。

证明:数列通项 x n = 2 + x n − 1 第一步先证明数列 x n 有界 利用数学归纳法 x 1 = 2 < 2 假设 x k < 2 ,则 x k + 1 = 2 + x k < 2 + 2 = 2 所以数列 x n < 2 即数列 x n 有界 第二步证明数列为单调增加的。 x n + 1 − x n = 2 + x n − x n = ( 2 + x n − x n ) ( 2 + x n + x n ) 2 + x n + x n = ( 1 + x n ) ( 2 − x n ) 2 + x n + x n ,由第一步知道 x n < 2 , 所以 x n + 1 > x n , 即数列 x n 为单调增加数列,则由准则 I I 数列 x n 极限存在。 假设数列 x n 极限为 a ,则对等式 x n + 1 = 2 + x n 求极限得 lim ⁡ n → ∞ x n + 1 = lim ⁡ n → ∞ 2 + x n ,得 a = 2 + a , 解方程式得 a = 2 或者 a = − 1 因为 x 1 = 2 > 0 且数列为单调增加数列,所以 数列极限为 2 ,即 lim ⁡ n → ∞ x n = 2 证明:数列通项 x_n=\sqrt {2+x_{n-1}} \\ 第一步先证明数列{x_n}有界 \\ 利用数学归纳法 x_1=\sqrt 2\lt 2 \\ 假设x_k\lt 2 ,则 \\ x_{k+1}=\sqrt {2+x_k}\lt\sqrt {2+2}=2 所以数列x_n\lt 2 即数列{x_n}有界 \\ 第二步证明数列为单调增加的。 x_{n+1}-x_n=\sqrt {2+x_n}-x_n=\frac{(\sqrt {2+x_n}-x_n)(\sqrt {2+x_n}+x_n)}{\sqrt {2+x_n}+x_n}\\ = \frac{(1+x_n)(2-x_n)}{\sqrt {2+x_n}+x_n} ,由第一步知道 x_n\lt 2 ,所以 \\ x_{n+1}\gt x_n ,即数列{x_n}为单调增加数列,则由准则II数列{x_n}极限存在。 \\ 假设数列{x_n}极限为a,则对等式x_{n+1}=\sqrt {2+x_n}求极限得 \\ \lim\limits_{n\to\infty} x_{n+1}=\lim\limits_{n\to\infty}\sqrt {2+x_n} ,得 \\ a = \sqrt {2+a},解方程式得a=2或者a=-1 因为x_1=\sqrt 2>0且数列为单调增加数列,所以 \\ 数列极限为2,即\lim\limits_{n\to\infty} x_n= 2 证明:数列通项xn=2+xn1 第一步先证明数列xn有界利用数学归纳法x1=2 <2假设xk<2,则xk+1=2+xk <2+2 =2所以数列xn<2即数列xn有界第二步证明数列为单调增加的。xn+1xn=2+xn xn=2+xn +xn(2+xn xn)(2+xn +xn)=2+xn +xn(1+xn)(2xn),由第一步知道xn<2,所以xn+1>xn,即数列xn为单调增加数列,则由准则II数列xn极限存在。假设数列xn极限为a,则对等式xn+1=2+xn 求极限得nlimxn+1=nlim2+xn ,得a=2+a ,解方程式得a=2或者a=1因为x1=2 >0且数列为单调增加数列,所以数列极限为2,即nlimxn=2

  • 适用:递推数列, a n + 1 = f ( a n ) a_{n+1}=f(a_n) an+1=f(an)
  • 准则II应用步骤:
    • 有界
    • 单调
    • 如果需要求极限值:建立极限值代数方程,并求解。利用有界确定的范围,对极限取舍。
    • 是先证明有界还是先证明单调根据数列或者函数特点确定,无固定顺序。

准则 I I ′ II^{'} II:设函数 f ( x ) f(x) f(x)的某个左邻域内单调且有界,则 f ( x ) f(x) f(x) x 0 x_0 x0的左极限 f ( x 0 − ) f(x_0^-) f(x0)必定存在。

4 lim ⁡ x → ∞ ( 1 + 1 x ) x \lim\limits_{x\to\infty}(1+\frac{1}{x})^x xlim(1+x1)x

下面考虑x取正整数n而趋于 + ∞ +\infty +的情形。
设 x n = ( 1 + 1 n ) n , 证明数列 x n 单调增加并且有界。按二项展开式有, ( 1 + 1 n ) n = ∑ k = 0 n C n k 1 n − k 1 n k , 其中 C n k = n ! k ! ( n − k ) ! , 1 n − k = 1 设x_n=(1+\frac{1}{n})^n,证明数列{x_n}单调增加并且有界。按二项展开式有, \\ (1+\frac{1}{n})^n=\sum_{k=0}^nC_n^k1^{n-k}\frac{1}{n}^k,其中 \\ C_n^k=\frac{n!}{k!(n-k)!} ,1^{n-k}=1 \\ xn=(1+n1)n,证明数列xn单调增加并且有界。按二项展开式有,(1+n1)n=k=0nCnk1nkn1k,其中Cnk=k!(nk)!n!,1nk=1
( 1 + 1 n ) n = 1 + n 1 ! ⋅ 1 n + n ( n − 1 ) 2 ! ⋅ 1 n 2 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋯ ( n − n + 1 ) n ! ⋅ 1 n n = (1+\frac{1}{n})^n=1+\frac{n}{1!}\cdot \frac{1}{n}+\frac{n(n-1)}{2!}\cdot\frac{1}{n^2}+\cdots+\frac{n(n-1)(n-2)\cdots(n-n+1)}{n!}\cdot\frac{1}{n^n}=\\ (1+n1)n=1+1!nn1+2!n(n1)n21++n!n(n1)(n2)(nn+1)nn1=
1 + 1 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) 同理得 ( 1 + 1 n ) n + 1 = 1 + 1 + 1 2 ! ( 1 − 1 n + 1 ) + ⋯ + 1 n ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n − 1 n + 1 ) + 1 ( n + 1 ) ! ( 1 − 1 n + 1 ) ( 1 − 2 n + 1 ) ⋯ ( 1 − n n + 1 ) 比较 x n 和 x n + 1 的展开式,可以看到除前 2 项之后, x n + 1 的每一项都大于 x n 的对应项,并且 x n + 1 还多了最后一项,其值大于 0 , 因此 x n < x n + 1 这就说明数列 x n 是单调增加的。把 x n 的各项展开式括号中用较大的 1 代替得, x n ≤ 1 + ( 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! ) ≤ 1 + ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n ) = 3 − 1 2 n − 1 < 3 这说明数列 x n 是有界的。根据极限存在准则 I I ,这个数列 x n 的极限是存在的,通常用字母 e 表示。 lim ⁡ x → ∞ ( 1 + 1 x ) x = e 1+1+\frac{1}{2!}(1-\frac{1}{n})+\cdots+\frac{1}{n!}(1-\frac{1}{n})(1-\frac{2}{n})\cdots(1-\frac{n-1}{n}) \\ 同理得 (1+\frac{1}{n})^{n+1}= 1+1+\frac{1}{2!}(1-\frac{1}{n+1})+\cdots+\frac{1}{n!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots(1-\frac{n-1}{n+1})+\frac{1}{(n+1)!}(1-\frac{1}{n+1})(1-\frac{2}{n+1})\cdots(1-\frac{n}{n+1}) \\ 比较x_n和x_{n+1}的展开式,可以看到除前2项之后,x_{n+1}的每一项都大于x_n的对应项,并且x_{n+1}还多了最后一项,其值大于0,因此 \\ x_n\lt x_{n+1} \\ 这就说明数列{x_n}是单调增加的。把x_n的各项展开式括号中用较大的1代替得,\\ x_n\le 1+(1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!})\le 1+(1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^n})\\ =3-\frac{1}{2^{n-1}}\lt 3 \\ 这说明数列{x_n}是有界的。根据极限存在准则II,这个数列{x_n}的极限是存在的,通常用字母e表示。\\ \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e 1+1+2!1(1n1)++n!1(1n1)(1n2)(1nn1)同理得(1+n1)n+1=1+1+2!1(1n+11)++n!1(1n+11)(1n+12)(1n+1n1)+(n+1)!1(1n+11)(1n+12)(1n+1n)比较xnxn+1的展开式,可以看到除前2项之后,xn+1的每一项都大于xn的对应项,并且xn+1还多了最后一项,其值大于0,因此xn<xn+1这就说明数列xn是单调增加的。把xn的各项展开式括号中用较大的1代替得,xn1+(1+2!1+3!1++n!1)1+(1+21+221++2n1)=32n11<3这说明数列xn是有界的。根据极限存在准则II,这个数列xn的极限是存在的,通常用字母e表示。xlim(1+x1)x=e
注意:

  1. ( 1 + 1 x ) x (1+\frac{1}{x})^x (1+x1)x,其中 ( 1 + 1 x ) (1+\frac{1}{x}) (1+x1)为底, x x x为指数,称为幂指函数,一般式为 u ( x ) v ( x ) , u ( x ) > 0 u(x)^{v(x)},u(x)\gt 0 u(x)v(x),u(x)>0
  2. lim ⁡ x → ∞ ( 1 + 1 x ) = 1 , lim ⁡ x → ∞ x = ∞ \lim\limits_{x\to\infty}(1+\frac{1}{x})=1,\lim\limits_{x\to\infty}x=\infty xlim(1+x1)=1,xlimx=,称为 1 ∞ 1^\infty 1型未定式。
  3. lim ⁡ x → ∞ ( 1 + 1 x ) x = e ⇔ lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim\limits_{x\to\infty}(1+\frac{1}{x})^x=e\Leftrightarrow\lim\limits_{x\to 0}(1+x)^{\frac{1}{x}}=e xlim(1+x1)x=ex0lim(1+x)x1=e

推广:若 lim ⁡ f ( x ) = 0 \lim f(x)=0 limf(x)=0,则 lim ⁡ [ 1 + f ( x ) ] 1 f ( x ) = e \lim[1+f(x)]^{\frac{1}{f(x)}}=e lim[1+f(x)]f(x)1=e

5 柯西极限存在准则

柯西极限存在准则 数列 x n {x_n} xn收敛的充分必要条件是:对于任意给定的正数 ϵ \epsilon ϵ,存在正整数 N N N,使得当 m > N , n > N m\gt N , n\gt N m>N,n>N时,有

∣ x m − x n ∣ < ϵ |x_m-x_n|\lt\epsilon xmxn<ϵ

6 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.

[1]黑马程序员.【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p7.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值