极限存在准则,两个重要极限

本文探讨了数学分析中的极限理论,包括夹逼准则及其在证明中的应用,以及重要极限如1+无穷小数的性质。同时提到了扇形面积公式在几何问题中的便利性,以及有界单调数列的极限存在性。此外,还强调了无穷小替换和等价无穷小的概念在求解过程中的作用。最后,阐述了单调有界数列的极限定理及其在数学分析中的重要地位。
摘要由CSDN通过智能技术生成

夹逼准则:(很难用,三者极限相同,构造y和z的函数要自己构造还要满足放缩)

(1)(2)是证明那么后面的条件

 2.一个重要极限(同除x又是一条出路,哈哈)

扇形面积1/2lr(l为弧长)或1/2θr²。(上面那个图的)

 后面等价无穷小替换时很方便。而且注意这个x的趋于情况。x位于分母趋于零。也有可能遇到有界函数×无穷小=无穷小。

第二个极限准则:单调有界数列必有极限。

(收敛必有界,有界不一定收敛。)

第二个重要极限(x和1/x可能会换位置)即1+无穷小的数

 会配凑就好多了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值