0202单点有向路径_单点最短路径-有向图-数据结构和算法(Java)

1 有向图的寻路

1.1 单点有向路径

单点有向路径问题:给定一幅有向图和一个起点s,从s到给定的目的顶点v是否存在一条有向路径?如果有找出这条路径。

算法和逻辑同无向图中处理一致,下面给出非递归实现代码如下:

package com.gaogzhen.datastructure.graph.directed;

import com.gaogzhen.datastructure.graph.undirected.Entry;
import com.gaogzhen.datastructure.stack.Stack;
import edu.princeton.cs.algs4.Digraph;

import java.util.Iterator;

/**
 * @author Administrator
 */
public class DepthFirstDirectedPaths {

    /**
     * 标记数据
     */
    private boolean[] marked;

    /**
     * 起点可达顶点到起点的路径
     */
    private int[] edgeTo;

    /**
     * 起点
     */
    private final int s;

    /**
     * 计算有向图G从给定起点s可达的路径
     *
     * @param G 有向图
     * @param s 起点
     * @throws IllegalArgumentException unless {@code 0 <= s < V}
     */
    public DepthFirstDirectedPaths(Digraph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        this.s = s;
        validateVertex(s);
        dfs(G);
    }

    private void dfs(Digraph digraph) {
        Stack<Entry<Integer, Iterator<Integer>>> path = new Stack<>();
        // marked[v] = true;
        if (!marked[s]) {
            // 键值对起点-起点对应邻接表迭代器压入栈中
            marked[s] = true;
            Iterable<Integer> iterable = digraph.adj(s);
            Iterator<Integer> it;
            if (iterable != null && (it = iterable.iterator()) != null){
                path.push(new Entry<>(s, it));
            }
        }
        while (!path.isEmpty()) {
            Entry<Integer, Iterator<Integer>> entry = path.pop();
            int x;
            Iterator<Integer> it = entry.getValue();
            Integer f = entry.getKey();
            while (it.hasNext()) {
                // 当前顶点对应的邻接表迭代器还有元素,获取下一个元素
                x = it.next();
                if (!marked[x]) {
                    // 顶点未被标记,标记顶点且标记路径x->f
                    // f是x所在邻接表对应的顶点
                    marked[x] = true;
                    edgeTo[x] = f;
                    if (it.hasNext()) {
                        // 邻接表迭代器还有元素,重新压入栈
                        path.push(entry);
                    }
                    // 按照深度优先原则,把新标记顶点对应的键值对压入栈中,在下次循环时优先访问
                    Iterable<Integer> iterable = digraph.adj(x);
                    if (iterable != null && (it = iterable.iterator()) != null){
                        path.push(new Entry<>(x, it));
                    }
                    break;
                }
            }

        }
    }

    /**
     * 从起点s到给定的目的顶点v是否存在一条有向路径
     *
     * @param v 给定的顶点
     * @return {@code true} 存在一条从起点到顶点v的有向路径, {@code false} 不存在
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return marked[v];
    }


    /**
     * 从起点到给定顶点路径集合
     *
     * @param v 给定顶点
     * @return 从起点到给定顶点路径集合
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable<Integer> pathTo(int v) {
        validateVertex(v);
        if (!hasPathTo(v)) {
            return null;
        }
        Stack<Integer> path = new Stack<Integer>();
        for (int x = v; x != s; x = edgeTo[x]) {
            path.push(x);
        }
        path.push(s);
        return path;
    }

    /**
     * 校验顶点索引v是否合理
     *
     * @param v 顶点v
     */
    private void validateVertex(int v) {
        int V = marked.length;
        if (v < 0 || v >= V) {
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V - 1));
        }
    }
}

测试代码:

public static void testDepthFirstDirectedPaths() {
    String path = "H:\\gaogzhen\\java\\projects\\algorithm\\asserts\\tinyDG.txt";
    In in = new In(path);
    Digraph digraph = new Digraph(in);
    int s = 0;
    DepthFirstDirectedPaths directedPaths = new DepthFirstDirectedPaths(digraph, s);

    int v = 2;
    System.out.println(directedPaths.hasPathTo(v));
    System.out.println(directedPaths.pathTo(v));
}

测试结果:

 true
[0, 5, 4, 3, 2]

执行流程、算法逻辑和API参考之前文章0104路径搜索和单点路径-无向图-数据结构和算法(Java)

1.2 单点最短有向路径

单点最短有向路径问题:给定一幅图和一个起点s,从s到给定的目的顶点v是否存在一条有向路径?如果有,找出其中最短的那条(所含边数量最少)。

非递归实现:

package com.gaogzhen.datastructure.graph.directed;

import com.gaogzhen.datastructure.stack.Stack;
import edu.princeton.cs.algs4.Digraph;
import edu.princeton.cs.algs4.Queue;

/**
 *  单点最短有向路径
 * @author Administrator
 */
public class BreadthFirstDirectedPaths {
    private static final int INFINITY = Integer.MAX_VALUE;

    /**
     * 标记
     */
    private boolean[] marked;

    /**
     * 起点可达顶点到起点的路径
     */
    private int[] edgeTo;

    /**
     * 到起点有向路径的长度
     */
    private int[] distTo;

    /**
     * 计算有向图G中起点s可达路径
     * @param G 有向图
     * @param s 起点
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public BreadthFirstDirectedPaths(Digraph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            distTo[v] = INFINITY;
        }
        validateVertex(s);
        bfs(G, s);
    }

    /**
     * 计算有向图G中多起点sources可达路径
     * @param G  有向图
     * @param sources 多起点集合
     * @throws IllegalArgumentException if {@code sources} is {@code null}
     * @throws IllegalArgumentException unless each vertex {@code v} in
     *         {@code sources} satisfies {@code 0 <= v < V}
     */
    public BreadthFirstDirectedPaths(Digraph G, Iterable<Integer> sources) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            distTo[v] = INFINITY;
        }
        validateVertices(sources);
        bfs(G, sources);
    }

    /**
     * 广度优先搜索有向图G从起点s可达的最短路径
     * @param G 有向图
     * @param s 起点
     */
    private void bfs(Digraph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        marked[s] = true;
        distTo[s] = 0;
        q.enqueue(s);
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    // 路径长度=父结点路径长度+1
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    // BFS from multiple sources
    private void bfs(Digraph G, Iterable<Integer> sources) {
        Queue<Integer> q = new Queue<Integer>();
        for (int s : sources) {
            marked[s] = true;
            distTo[s] = 0;
            q.enqueue(s);
        }
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    /**
     * 是否存在一条从起点到给定目的顶点v的有向路径
     * @param v 目的顶点
     * @return {@code true} 存在一条有向路径, {@code false} 不存在
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public boolean hasPathTo(int v) {
        validateVertex(v);
        return marked[v];
    }

    /**
     * 从起点到给定目的顶点最短路径长度
     * @param v 目的顶点
     * @return 从起点到给定目的顶点最短路径长度
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public int distTo(int v) {
        validateVertex(v);
        return distTo[v];
    }

    /**
     * 从起点到给定目的顶点的最短有向路径
     * @param v 目的顶点
     * @return 起点到给定目的顶点的最短有向路径;没有返回{@code null}
     * @throws IllegalArgumentException unless {@code 0 <= v < V}
     */
    public Iterable<Integer> pathTo(int v) {
        validateVertex(v);

        if (!hasPathTo(v)) {
            return null;
        }
        Stack<Integer> path = new Stack<Integer>();
        int x;
        for (x = v; distTo[x] != 0; x = edgeTo[x]) {
            path.push(x);
        }
        path.push(x);
        return path;
    }

    /**
     * 校验顶点索引
     * @param v 顶点索引
     */
    private void validateVertex(int v) {
        int V = marked.length;
        if (v < 0 || v >= V) {
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
        }
    }

    /**
     * 校验顶点索引集合
     * @param vertices  顶点索引结合
     */
    private void validateVertices(Iterable<Integer> vertices) {
        if (vertices == null) {
            throw new IllegalArgumentException("argument is null");
        }
        int V = marked.length;
        int count = 0;
        for (Integer v : vertices) {
            count++;
            if (v == null) {
                throw new IllegalArgumentException("vertex is null");
            }
            validateVertex(v);
        }
        if (count == 0) {
            throw new IllegalArgumentException("zero vertices");
        }
    }
}

测试代码:

public static void testBreadthFirstDirectedPaths() {
    String path = "H:\\gaogzhen\\java\\projects\\algorithm\\asserts\\tinyDG.txt";
    In in = new In(path);
    Digraph digraph = new Digraph(in);
    // List<Integer> integers = Arrays.asList(0, 2);
    BreadthFirstDirectedPaths paths = new BreadthFirstDirectedPaths(digraph, 0);

    int v = 2;
    System.out.println(paths.distTo(v));
    System.out.println(paths.pathTo(v));
}

测试结果:

3
[0, 5, 4, 2]

执行流程、算法逻辑和API参考之前文章-0106广度优先搜索和最短路径-无向图-数据结构和算法(Java)

后记

如果小伙伴什么问题或者指教,欢迎交流。

❓QQ:806797785

⭐️源代码仓库地址:https://gitee.com/gaogzhen/algorithm

参考链接:

[1][美]Robert Sedgewich,[美]Kevin Wayne著;谢路云译.算法:第4版[M].北京:人民邮电出版社,2012.10.p368-369.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值