双显卡双显示输出,怎么设置默认显卡为集显

进BIOS改,在BIOS内的Advanced BIOS Features上的Init Display First(开机显示选择)这里更改,Onboard就是集显输出了,PCI就是默认的独显输出,PCIE X 16就是插在第一根靠近北桥的X16插槽上的显卡输出。
### DeepSeek GPU 配置报错解决方案 在使用 GPU 运行 DeepSeek 模型时,可能会因资源分配、CUDA 驱动版本不匹配或其他环境配置问题而引发错误。以下是针对此类问题的分析与解决方法。 #### 1. 环境配置验证 确保系统已正确安装 NVIDIA 的驱动程序以及 CUDA 工具链,并满足 DeepSeek 所需的最低版本要求[^3]。可以通过以下命令检查当前系统的 CUDA 和 GPU 配置: ```bash nvidia-smi ``` 如果显示多个 GPU 设备,则说明硬件支持多 GPU 并行计算。此外,还需确认 Docker 容器内的 CUDA 版本与主机一致,可通过以下方式检测容器内部的 CUDA 配置: ```bash docker run --rm nvidia/cuda:11.0-base nvidia-smi ``` #### 2. 多 GPU 支持设置 DeepSeek 默认可能未启用多 GPU 加速功能。为了利用 GPU 提升性能,可以尝试调整 `torch.distributed` 或其他分布式训练框架的相关参数。例如,在启动 Ollama 服务前,指定设备数量并加载模型到多个 GPU 上: ```python import torch from deepseek import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("deepseek/r1") model = AutoModelForCausalLM.from_pretrained( "deepseek/r1", device_map="auto" ) if torch.cuda.device_count() > 1: model.parallelize() else: model.to('cuda') ``` 上述代码片段中,`device_map='auto'` 自动将模型分片分布至可用的 GPU 中;当检测到超过一块显卡时调用 `parallelize()` 方法实现负载均衡[^4]。 #### 3. 错误日志解析 对于提到的 “max retries exceeded” 下载超时问题,通常由网络连接不稳定引起。建议优化镜像源地址或者增加重试次数来缓解此状况。修改后的拉取指令如下所示: ```bash docker exec -it ollama ollama pull deepseek-r1:1.5b \ --retry-times=10 --timeout=60s ``` 另外需要注意的是,部分情况下即使成功完成初始阶段的数据传输也可能因为后续操作失败而导致整体流程中断。此时应仔细阅读完整的异常堆栈信息以便进一步诊断根本原因所在[^1]。 #### 4. 资源隔离策略 为了避免潜在的竞争条件影响稳定性,在 WSL2 环境下运行时推荐单独创建一个新的 cgroup 来管理进程组所占用的 CPU/内存比例及 I/O 带宽限额等关键指标[^2]: ```json { "/": { "cpu_quota": 20000, "memory_limit_in_bytes": 8 * 1024 * 1024 * 1024, "blkio_weight_device": [ {"major": 8,"minor": 0,"weight":70} ] } } ``` 以上 JSON 文件定义了一个新的控制组规则,其中设置了最大允许使用的两个核心数 (即 cpu_quota 设置为 200%) ,总 RAM 不得超出八 GB ( memory_limit_in_bytes 参数),磁盘读写权重偏向第一个逻辑硬盘分区( blkio_weight_device 字段)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值