背包问题算法(简单易懂)

目录

1:01背包

2:完全背包

3:多重背包


(1)01背包

01背包,什么是01背包呢,这里有一道01背包的题目

题目描述

小明有一个容量为 VV 的背包。

这天他去商场购物,商场一共有 NN 件物品,第 ii 件物品的体积为 w_iwi​,价值为 v_ivi​。

小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。

输入描述

输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。

第 2\sim N+12∼N+1 行包含 22 个正整数 w,vw,v,表示物品的体积和价值。

1\leq N\leq10^21≤N≤102,1\leq V \leq 10^31≤V≤103,1 \leq w_i,v_i \leq10^31≤wi​,vi​≤103。

输出描述

输出一行整数表示小明所能获得的最大价值。

读了题目之后,我们知道了要在不超过背包容积的情况下得到最大价值,每个物品我们有两种选择,拿或者不拿,这就是01背包中的0和1的意思。那我们该如何得到最大价值呢,我们看一下下面的代码。

 

#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
	cin>>n>>V;
	for(int i=0;i<n;i++){
		cin>>w[i]>>v[i];
	}
	for(int i=0;i<n;i++){
		for(int j=V;j>=w[i];j--){
			dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//两组情况拿或者不拿
		}
	}
	int ans=0;
	for(int i=0;i<=V;i++){
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

(2)完全背包

什么又是完全背包呢?这里有一道完全背包的题目

题目描述

小明有一个容量为 VV 的背包。

这天他去商场购物,商场一共有 NN 种物品,第 ii 种物品的体积为 w_iwi​,价值为 v_ivi​,每种物品都有无限多个。

小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。

输入描述

输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。

第 2\sim N+12∼N+1 行包含 22 个正整数 w,vw,v,表示物品的体积和价值。

1\leq N\leq10^31≤N≤103,1\leq V \leq 10^31≤V≤103,1 \leq w_i,v_i \leq10^31≤wi​,vi​≤103。

输出描述

输出一行整数表示小明所能获得的最大价值。

大家在读了题目之后,应该发现了跟01背包有哪里不一样了吧,对!就是物品数量不一样了,01背包每种物品只有一个,而完全背包每种物品却是无数个,只要你的价值够大,容积没有超过背包,全部都是一种物品都行。既然这样,那我们做这道题目其实只要在01背包代码上修改就行啦。

请看代码!!!

#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
	cin>>n>>V;
	for(int i=0;i<n;i++){
		cin>>w[i]>>v[i];
	}
	for(int i=0;i<n;i++){
		for(int j=w[i];j<=V;j++){//与01背包不一样,j是从w[i]开始的,就是dp[j]其实是上一个i-1的j
			dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//两组情况拿或者不拿
		}
	}
	int ans=0;
	for(int i=0;i<=V;i++){
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

 (3)多重背包

老样子,这里有一道多重背包的题目

题目描述

小明有一个容量为 VV 的背包。

这天他去商场购物,商场一共有 NN 种物品,第 ii 种物品的体积为 w_iwi​,价值为 v_ivi​,数量为 s_isi​。

小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。

输入描述

输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。

第 2\sim N+12∼N+1 行包含 33 个正整数 w,v,sw,v,s,表示物品的体积和价值。

1\leq N\leq10^21≤N≤102,1\leq V \leq 2\times10^21≤V≤2×102,1 \leq w_i,v_i,s_i \leq 2\times10^21≤wi​,vi​,si​≤2×102。

输出描述

输出一行整数表示小明所能获得的最大价值。

读了题目之后,有没有发现跟前面有什么不一样呢?对!物品的数量,01背包只有一个,完全有无数个,而多重背包的物品数量有限制,是你输入的。既然这样,我们又该怎么去做呢,其实还是在前面的代码上我们稍微修改一下就行啦,请看代码哈!!!

#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010],s[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
	cin>>n>>V;
	for(int i=0;i<n;i++){
		cin>>w[i]>>v[i]>>s[i];
	}
	for(int i=0;i<n;i++){
		for(int j=V;j>=1;j--){//多重背包
	        for(int k=1;k<=s[i]&&j>=k*w[i];k++){//k表示物品的数量
	        	dp[j]=max(dp[j],dp[j-k*w[i]]+k*v[i]);
			}
		}
	}
	int ans=0;
	for(int i=0;i<=V;i++){
		ans=max(ans,dp[i]);
	}
	cout<<ans;
	return 0;
}

好啦,本篇介绍背包就到此结束啦(其实还不止,还有啥混合背包,分组背包),希望大家越来越优秀哈!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稻子永不倒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值