目录
1:01背包
2:完全背包
3:多重背包
(1)01背包
01背包,什么是01背包呢,这里有一道01背包的题目
题目描述
小明有一个容量为 VV 的背包。
这天他去商场购物,商场一共有 NN 件物品,第 ii 件物品的体积为 w_iwi,价值为 v_ivi。
小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。
输入描述
输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。
第 2\sim N+12∼N+1 行包含 22 个正整数 w,vw,v,表示物品的体积和价值。
1\leq N\leq10^21≤N≤102,1\leq V \leq 10^31≤V≤103,1 \leq w_i,v_i \leq10^31≤wi,vi≤103。
输出描述
输出一行整数表示小明所能获得的最大价值。
读了题目之后,我们知道了要在不超过背包容积的情况下得到最大价值,每个物品我们有两种选择,拿或者不拿,这就是01背包中的0和1的意思。那我们该如何得到最大价值呢,我们看一下下面的代码。
#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
cin>>n>>V;
for(int i=0;i<n;i++){
cin>>w[i]>>v[i];
}
for(int i=0;i<n;i++){
for(int j=V;j>=w[i];j--){
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//两组情况拿或者不拿
}
}
int ans=0;
for(int i=0;i<=V;i++){
ans=max(ans,dp[i]);
}
cout<<ans;
return 0;
}
(2)完全背包
什么又是完全背包呢?这里有一道完全背包的题目
题目描述
小明有一个容量为 VV 的背包。
这天他去商场购物,商场一共有 NN 种物品,第 ii 种物品的体积为 w_iwi,价值为 v_ivi,每种物品都有无限多个。
小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。
输入描述
输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。
第 2\sim N+12∼N+1 行包含 22 个正整数 w,vw,v,表示物品的体积和价值。
1\leq N\leq10^31≤N≤103,1\leq V \leq 10^31≤V≤103,1 \leq w_i,v_i \leq10^31≤wi,vi≤103。
输出描述
输出一行整数表示小明所能获得的最大价值。
大家在读了题目之后,应该发现了跟01背包有哪里不一样了吧,对!就是物品数量不一样了,01背包每种物品只有一个,而完全背包每种物品却是无数个,只要你的价值够大,容积没有超过背包,全部都是一种物品都行。既然这样,那我们做这道题目其实只要在01背包代码上修改就行啦。
请看代码!!!
#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
cin>>n>>V;
for(int i=0;i<n;i++){
cin>>w[i]>>v[i];
}
for(int i=0;i<n;i++){
for(int j=w[i];j<=V;j++){//与01背包不一样,j是从w[i]开始的,就是dp[j]其实是上一个i-1的j
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);//两组情况拿或者不拿
}
}
int ans=0;
for(int i=0;i<=V;i++){
ans=max(ans,dp[i]);
}
cout<<ans;
return 0;
}
(3)多重背包
老样子,这里有一道多重背包的题目
题目描述
小明有一个容量为 VV 的背包。
这天他去商场购物,商场一共有 NN 种物品,第 ii 种物品的体积为 w_iwi,价值为 v_ivi,数量为 s_isi。
小明想知道在购买的物品总体积不超过 VV 的情况下所能获得的最大价值为多少,请你帮他算算。
输入描述
输入第 11 行包含两个正整数 N,VN,V,表示商场物品的数量和小明的背包容量。
第 2\sim N+12∼N+1 行包含 33 个正整数 w,v,sw,v,s,表示物品的体积和价值。
1\leq N\leq10^21≤N≤102,1\leq V \leq 2\times10^21≤V≤2×102,1 \leq w_i,v_i,s_i \leq 2\times10^21≤wi,vi,si≤2×102。
输出描述
输出一行整数表示小明所能获得的最大价值。
读了题目之后,有没有发现跟前面有什么不一样呢?对!物品的数量,01背包只有一个,完全有无数个,而多重背包的物品数量有限制,是你输入的。既然这样,我们又该怎么去做呢,其实还是在前面的代码上我们稍微修改一下就行啦,请看代码哈!!!
#include<bits/stdc++.h>
using namespace std;
int V;
int n;
int w[1010],v[1010],s[1010];//w,v分别表示体积,按照题目的意思的
int dp[1010];//dp[i]表示体积为i的价值
int main()
{
cin>>n>>V;
for(int i=0;i<n;i++){
cin>>w[i]>>v[i]>>s[i];
}
for(int i=0;i<n;i++){
for(int j=V;j>=1;j--){//多重背包
for(int k=1;k<=s[i]&&j>=k*w[i];k++){//k表示物品的数量
dp[j]=max(dp[j],dp[j-k*w[i]]+k*v[i]);
}
}
}
int ans=0;
for(int i=0;i<=V;i++){
ans=max(ans,dp[i]);
}
cout<<ans;
return 0;
}