【一天一大 lee】摆动序列 (难度:中等) - Day20201212

20201212

题目:

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3)  是正负交替出现的。相反, [1,4,7,2,5]  和  [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例:

  1. 示例 1:
输入: [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列。
  1. 示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
  1. 示例 2:
输入: [1,2,3,4,5,6,7,8,9]
输出: 2

提示:

  • 给定字符串的长度在 [1, 10,000] 之间.

抛砖引玉

简化下题意:
给出一个整数数组,找出两两相邻元素差值交替大于 0-小于 0 或者小于 0-大于 0 的最长子序列(子序列中不能包含差值等于 0 部分)

思路

动态规划

动态规划:将问题拆分成相对简单的子问题处理

就本题而言问题是求最长摇摆子序列,子问题是:nums 中增加一个元素,对其摇摆子序列来看能否添加到子序列中,添加后形成的摇摆子序列是否变长了

根据摇摆子序列的最后一次’摇摆’状态将子序列分为:上升状态 upDp(即最后两数查大于 0)、下降状态 downDp(即最后两数查小于 0)

nums 新增一个元素,对其摇摆子序列的影响:

  • 新增元素大于前一个元素
    • 如果原摇摆子序列属于下降状态则新元素可以添加进去,子序列状态变成上升状态
    • 如果原摇摆子序列属于上升状态,则该元素不能进入子序列,子序列状态保持不变
    • 保留两种情况子序列最大长度
  • 新增元素小于前一个元素
    • 如果原摇摆子序列属于上升状态则新元素可以添加进去,子序列状态变成下降状态
    • 如果原摇摆子序列属于下降状态,则该元素不能进入子序列,子序列状态保持不变
    • 保留两种情况子序列最大长度
  • 新增元素等于前一个元素,子序列状态不变

最后返回上升状态、下降状态摇摆子序列的最大长度

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-s8NhKl9v-1608016487767)(http://qiniu.gaowenju.com/leecode/20201212.png)]

/**
 * @param {number[]} nums
 * @return {number}
 */
var wiggleMaxLength = function(nums) {
    let len = nums.length
    if (len < 2) return len
    // 初始化到达nums不同位置,不同状态子序列长度
    let upDp = Array(len).fill(0),
        downDp = Array(len).fill(0)
    upDp[0] = downDp[0] = 1
    for (let i = 1; i < len; i++) {
        // 新元素大于上一个元素、原下降状态+1,变成上升状态
        if (nums[i] > nums[i - 1]) {
            upDp[i] = Math.max(upDp[i - 1], downDp[i - 1] + 1)
            downDp[i] = downDp[i - 1]
        } else if (nums[i] < nums[i - 1]) {
            // 新元素小于上一个元素、原上升状态+1,变成下降状态
            upDp[i] = upDp[i - 1]
            downDp[i] = Math.max(upDp[i - 1] + 1, downDp[i - 1])
        } else {
            upDp[i] = upDp[i - 1]
            downDp[i] = downDp[i - 1]
        }
    }
    // 返回以不同状态结束的最大子序列长度
    return Math.max(upDp[len - 1], downDp[len - 1])
}

优化

上面逻辑可以见,在计算时 upDp、downDp 分别都只依赖上一次的计算,那么可以将其简化成 number : up、down 来记录不同状态子序列最大长度。

因为要组成摇摆子序列,两种状态应该是交替出现的,即 |up-down|<=1,那么在

Math.max(upDp[i - 1], downDp[i - 1] + 1) => down+1,则:

var wiggleMaxLength = function(nums) {
    let len = nums.length
    if (len < 2) return len
    let up = (down = 1)
    for (let i = 2; i < len; i++) {
        if (nums[i] > nums[i - 1]) {
            up = down + 1
        } else if (nums[i] < nums[i - 1]) {
            down = up + 1
        }
    }
    return Math.max(up, down)
}

博客: 前端小书童

每天的每日一题,写的题解会同步更新到公众号一天一大 lee 栏目
欢迎关注留言

公众号:前端小书童

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值