【人工智能之大模型】如何缓解大语言模型LLMs重复读的问题?
【人工智能之大模型】如何缓解大语言模型LLMs重复读的问题?
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/146177181
前言
大语言模型(LLMs)在处理长文本时,容易出现 “重复读”(re-reading) 现象,即在生成文本时重复之前已阅读或处理过的内容。这种问题不仅影响生成效率,还可能导致生成文本冗余或偏离原意。针对这一问题,可以从 架构优化、训练策略、推理改进 三个方面进行缓解。
1. 架构优化:减少无效重复计算
大模型通常基于 Transformer 架构,而标准 Transformer 采用 全局注意力(full self-attention) 机制,在长文本处理中容易重复访问已阅读的信息。以下优化可以减少重复读取:
使用稀疏注意力机制(Sparse Attention)
- 例如 Longformer、BigBird 采用局部窗口注意力(windowed attention)+ 全局 token
机制,避免全局计算,提高效率。 - 通过 滑动窗口注意力(Sliding Window Attention),使模型仅关注相邻的 token,减少无效信息重复读取。
存储式 Transformer(Retrieval-Augmented Models)
- 例如 RETRO(Retrieval Transformer),在处理长文本时,通过外部检索存储相关内容,减少模型内部冗余计算。
- 结合 缓存机制(Memory Augmented Networks),如 RNN 结合 Transformer,减少对相同信息的多次访问。
2. 训练策略优化:减少模型生成冗余
去冗余训练(De-duplication Training)
- 在数据预处理中,过滤重复或高相似度数据,避免模型在学习阶段就形成“重复表达”习惯。
- 采用 TF-IDF、BM25 或 Faiss 进行文本相似度计算,剔除冗余样本。
对比学习(Contrastive Learning)
- 通过 对比损失(Contrastive Loss) 训练,让模型学习区分不同段落信息的差异,降低生成重复内容的概率。
去偏优化(Decoding Constraints)
- 训练阶段对损失函数进行约束,比如引入 重复惩罚(Repetition Penalty),避免模型学习过于依赖相同上下文。
3. 推理阶段优化:提升生成文本的多样性
重复惩罚机制(Repetition Penalty)
- 调整解码策略,如在 GPT 系列 中,增加对重复 token 的惩罚权重,降低模型重复生成已读内容的可能性。
- 例如,在 transformers 库中,设置 repetition_penalty > 1 来减少重复。
缓存 & 记忆机制(Cache & Memory Augmentation)
- 使用 KV 缓存(Key-Value Cache) 记录已处理内容,减少重复计算,提高推理效率。
- 例如 FlashAttention 通过高效的注意力计算减少重复访问。
控制解码温度(Temperature)
- 降低温度参数(temperature < 1.0),减少模型对高概率重复 token 的依赖,提高生成文本的多样性。
使用 Top-K、Top-P 采样策略
- Top-K 采样 限制模型每一步仅从概率最高的 K 个词中选择,减少低信息量词汇重复。
- Top-P 采样(Nucleus Sampling) 通过动态概率阈值采样,提升模型生成的多样性。
总结
缓解 LLMs 重复读 问题的核心在于 减少无效注意力计算、优化训练数据、改进推理策略:
-
架构优化:使用稀疏注意力、存储式 Transformer 降低计算冗余。
-
训练优化:去重数据、引入对比学习和重复惩罚,提高模型表达能力。
-
推理优化:调整解码策略,使用缓存、控制温度、优化采样,提高文本多样性。
这些方法可以协同作用,减少 LLM 生成过程中的重复现象,提高生成文本的连贯性和信息质量。
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/146177181