【人工智能之大模型】如何缓解大语言模型LLMs重复读的问题?

【人工智能之大模型】如何缓解大语言模型LLMs重复读的问题?

【人工智能之大模型】如何缓解大语言模型LLMs重复读的问题?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/146177181


前言

大语言模型(LLMs)在处理长文本时,容易出现 “重复读”(re-reading) 现象,即在生成文本时重复之前已阅读或处理过的内容。这种问题不仅影响生成效率,还可能导致生成文本冗余或偏离原意。针对这一问题,可以从 架构优化、训练策略、推理改进 三个方面进行缓解。

1. 架构优化:减少无效重复计算

大模型通常基于 Transformer 架构,而标准 Transformer 采用 全局注意力(full self-attention) 机制,在长文本处理中容易重复访问已阅读的信息。以下优化可以减少重复读取:

使用稀疏注意力机制(Sparse Attention)

  • 例如 Longformer、BigBird 采用局部窗口注意力(windowed attention)+ 全局 token
    机制,避免全局计算,提高效率。
  • 通过 滑动窗口注意力(Sliding Window Attention),使模型仅关注相邻的 token,减少无效信息重复读取。

存储式 Transformer(Retrieval-Augmented Models)

  • 例如 RETRO(Retrieval Transformer),在处理长文本时,通过外部检索存储相关内容,减少模型内部冗余计算。
  • 结合 缓存机制(Memory Augmented Networks),如 RNN 结合 Transformer,减少对相同信息的多次访问。

2. 训练策略优化:减少模型生成冗余

去冗余训练(De-duplication Training)

  • 在数据预处理中,过滤重复或高相似度数据,避免模型在学习阶段就形成“重复表达”习惯。
  • 采用 TF-IDF、BM25 或 Faiss 进行文本相似度计算,剔除冗余样本。

对比学习(Contrastive Learning)

  • 通过 对比损失(Contrastive Loss) 训练,让模型学习区分不同段落信息的差异,降低生成重复内容的概率。

去偏优化(Decoding Constraints)

  • 训练阶段对损失函数进行约束,比如引入 重复惩罚(Repetition Penalty),避免模型学习过于依赖相同上下文。

3. 推理阶段优化:提升生成文本的多样性

重复惩罚机制(Repetition Penalty)

  • 调整解码策略,如在 GPT 系列 中,增加对重复 token 的惩罚权重,降低模型重复生成已读内容的可能性。
  • 例如,在 transformers 库中,设置 repetition_penalty > 1 来减少重复。

缓存 & 记忆机制(Cache & Memory Augmentation)

  • 使用 KV 缓存(Key-Value Cache) 记录已处理内容,减少重复计算,提高推理效率。
  • 例如 FlashAttention 通过高效的注意力计算减少重复访问。

控制解码温度(Temperature)

  • 降低温度参数(temperature < 1.0),减少模型对高概率重复 token 的依赖,提高生成文本的多样性。

使用 Top-K、Top-P 采样策略

  • Top-K 采样 限制模型每一步仅从概率最高的 K 个词中选择,减少低信息量词汇重复。
  • Top-P 采样(Nucleus Sampling) 通过动态概率阈值采样,提升模型生成的多样性。

总结

缓解 LLMs 重复读 问题的核心在于 减少无效注意力计算、优化训练数据、改进推理策略

  • 架构优化:使用稀疏注意力、存储式 Transformer 降低计算冗余。

  • 训练优化:去重数据、引入对比学习和重复惩罚,提高模型表达能力。

  • 推理优化:调整解码策略,使用缓存、控制温度、优化采样,提高文本多样性。

这些方法可以协同作用,减少 LLM 生成过程中的重复现象,提高生成文本的连贯性和信息质量。


欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/146177181

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值