LTspice raw文件解析工具PyLTSpice

  如果我们能解析LTspice仿真生成的波形数据文件,即raw文件,就可以做很多后处理工作了。比如导入Matlab;做数据统计,画直方图(Histogram)等等。
  Python就提供了这么一个工具,PyLTSpice。另外在Github上也能下载:Gihub仓库地址
  或者更直接的,装完Python后直接在线安装这个包:(拿Python3.8举例)
在这里插入图片描述
在这里插入图片描述
  装完以后,打开cmd窗口,输入pip install PyLTSpice,回车即可:
在这里插入图片描述
  另外,如果需要画图,会用到matplotlib包,同样在cmd窗口输入pip install matplotlib进行安装。
  如果网速不好,建议切换pip镜像服务器。首先按快捷键 WIN+R,输入%APPDATA%,回车,定位到了Roaming文件夹,新建一个名为pip的文件夹,文件夹里新建一个文本文档并改名为pip.ini,编辑ini文件,输入以下内容并保存:

[global] 

index-url=https://pypi.tuna.tsinghua.edu.cn/simple

[install] 

trusted-host=tsinghua.edu.cn

在这里插入图片描述
  重点是,如何应用这个包:
  我们写一段python脚本,名字随意了(我取的LTspiceDataParserUtils.py),内容如下,注意需要解析的raw文件,路径一定要写对,不要丢了r

import matplotlib.pyplot as plt #导入绘图包
from PyLTSpice import LTSpice_RawRead #导入LTspice的Raw数据文件解析包


LTR = LTSpice_RawRead.LTSpiceRawRead(r"C:\Users\wanggaoyong\Desktop\temp\test.raw") #读取运行仿真后生成的raw文件

print(LTR.get_trace_names()) #打印raw文件里所有的波形名字,包括时间轴
print(LTR.get_raw_property()) #打印raw文件的属性

Vo = LTR.get_trace("V(out)") #获取V(out)波形数据
x = LTR.get_trace('time') #获取时间轴数据
steps = LTR.get_steps()
for step in range(len(steps)):
    # print(steps[step])
    plt.plot(x.get_time_axis(step), Vo.get_wave(step), label=steps[step])

plt.legend() # order a legend
plt.show()

  然后运行该脚本:
在这里插入图片描述
  PyLTSpice这个包还有很多功能,具体可以参考官方介绍,或者自行研究吧,我目前也就会了这一个功能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值