剑指Offer-矩形覆盖

题目描述

我们可以用2×1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2×1的小矩形无重叠地覆盖一个2×n的大矩形,总共有多少种方法?

解题思路:n=1时,有1种方法;n=2时,有2种方法;

所以要覆盖2×n时:
若摆放一块2×1小矩阵,则摆放方法共为f(n-1);
若摆放一块1×2小矩阵,则摆放方法共为f(n-2)。因为大矩阵为2×n,在第一排上横向防止小矩形,则第二排上必须横向放置小矩形,所以这两块的摆放方法都确定了,于是剩下的放置方法共为f(n-2)。

这就是一道变相的斐波那契数列。解题思路与剑指Offer-斐波那契数列一样。

最优解

// 动态规划,自底向上
public class Solution {
    public int RectCover(int target) {
        if(target<=2)
            return target;
        int f1 = 1;
        int f2 = 2;
        int f3 = 0;
        for(int i=3;i<=target;i++){
            f3 = f1 + f2;
            f1 = f2;
            f2 = f3;
        }
        return f3;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值