剑指Offer: 矩形覆盖

剑指Offer: 矩形覆盖

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

样例
比如n=3时,2*3的矩形块有3种覆盖方法:

算法 递归+滚动变量

我们将上面模型映射到一维,即是我们有一条长度为n的线段,现在要么放置长度为1,要么放置长度为2的线段,请将该线段填满。 这就转化成了走台阶的题目,一个n级阶梯,每次要么走一级要么两级,请问有多少种方法。 (走台阶的思路:当前台阶的跳法总数 = 当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数) 

综上分析,可知,

n <= 0 时, f(n) = 0;
n = 1时, f(n) = 1;
n = 2时, f(n) = 2;
n > 2时,f(n) = f(n - 1) + f(n - 2);
标准的斐波那契数列,故可用斐波那契数列解

时空分析

时间复杂度分析: O(n)

空间复杂度分析: O(1)

C++ 代码
class Solution {
public:
    int rectCover(int number) {
        if (number <= 0)
            return 0;
        else if (number == 1)
            return 1;
        else if (number == 2)
            return 2;
        
        int a = 1, b = 2, z = 0;
        for (int i = 3; i <= number; i++)
        {
            z = a + b;
            a = b;
            b = z;
        }
        
        return z;
    }
};

斐波那契数列其他解法详见,剑指Offer: 斐波那契数列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Erice_s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值