剑指Offer: 矩形覆盖
题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
样例
比如n=3时,2*3的矩形块有3种覆盖方法:
算法 递归+滚动变量
我们将上面模型映射到一维,即是我们有一条长度为n的线段,现在要么放置长度为1,要么放置长度为2的线段,请将该线段填满。 这就转化成了走台阶的题目,一个n级阶梯,每次要么走一级要么两级,请问有多少种方法。 (走台阶的思路:当前台阶的跳法总数 = 当前台阶后退一阶的台阶的跳法总数+当前台阶后退二阶的台阶的跳法总数)
综上分析,可知,
n <= 0 时, f(n) = 0;
n = 1时, f(n) = 1;
n = 2时, f(n) = 2;
n > 2时,f(n) = f(n - 1) + f(n - 2);
标准的斐波那契数列,故可用斐波那契数列解
时空分析
时间复杂度分析: O(n)
空间复杂度分析: O(1)
C++ 代码
class Solution {
public:
int rectCover(int number) {
if (number <= 0)
return 0;
else if (number == 1)
return 1;
else if (number == 2)
return 2;
int a = 1, b = 2, z = 0;
for (int i = 3; i <= number; i++)
{
z = a + b;
a = b;
b = z;
}
return z;
}
};
斐波那契数列其他解法详见,剑指Offer: 斐波那契数列