目标追踪(Tracking)是计算机视觉领域中的一个重要任务,它可以在视频序列中实时地定位和追踪特定目标的位置、尺寸和运动状态。目标可以是任何感兴趣的物体,如行人、车辆、动物等。目标追踪算法通常接收视频序列作为输入,并输出目标的边界框或轨迹。
目标追踪的基本流程可以划分为以下几个步骤:
运动模型:生成候选样本的速度与质量直接决定了跟踪系统表现的优劣。常用的有两种方法:粒子滤波(Particle Filter)和滑动窗口(Sliding Window)。粒子滤波是一种序贯贝叶斯推断方法,通过递归的方式推断目标的隐含状态。而滑动窗口是一种穷举搜索方法,它列出目标附近的所有可能的样本作为候选样本。
特征提取:鉴别性的特征表示是目标跟踪的关键之一。常用的特征被分为两种类型:手工设计的特征(Hand-crafted feature)和深度特征(Deep feature)。常用的手工设计的特征有灰度特征(Gray),方向梯度直方图(HOG),哈尔特征(Haar-like),尺度不变特征(SIFT)等。与人为设计的特征不同,深度特征是通过大量的训练样本学习出来的特征,它比手工设计的特征更具有鉴别性。
观测模型:如何为众多候选样本进行评分。评分机制的设计直接影响到跟踪的准确性和鲁棒性。
模型更新:如何更新观测模型使其适应目标的变化。由于目标在视频序列中可能会出现各种变化,如姿态变化、光照变化、遮挡等,因此模型更新是保持跟踪准确性和鲁棒性的关键。
集成方法:如何融合多个决策获得一个更优的决策结果。集成方法可以通过融合多个跟踪器的结果来提高跟踪的准确性和鲁棒性。
目标追踪在许多应用中都起着关键作用,如视频监控、自动驾驶、增强现实等。过去二三十年,视觉目标跟踪技术取得了长足的进步,特别是最近两年利用深度学习的目标跟踪方法取得了令人满意的效果,使目标跟踪技术获得了突破性的进展。
目标追踪(Tracking)的发展历史可以追溯到20世纪初期,但真正的技术进步和广泛应用主要是在过去的几十年里实现的。以下是目标追踪技术的主要发展阶段和里程碑:
早期阶段(1930s-1960s):目标追踪的起源可以追溯到二战时期的雷达技术。雷达技术的出现使得军事领域可以追踪和定位飞行目标,如飞机和导弹。这是目标追踪技术的早期应用。
视觉目标追踪的起步(1970s-1990s):随着计算机视觉技术的发展,研究者开始尝试使用图像和视频数据来追踪目标。这一阶段主要依赖于手工设计的特征和简单的运动模型。代表性的方法有卡尔曼滤波、粒子滤波等。
现代目标追踪技术的发展(2000s至今):随着计算机硬件性能的提升和算法的发展,目标追踪技术取得了显著的进步。特别是在深度学习技术兴起后,目标追踪的性能得到了极大的提升。研究者开始利用深度学习技术来提取目标的特征,并设计出更加复杂的模型来应对各种挑战,如遮挡、光照变化、尺度变化等。
深度学习在目标追踪中的应用:近年来,深度学习技术在目标追踪领域取得了突破性的进展。研究者利用卷积神经网络(CNN)来提取目标的深度特征,使得目标追踪的准确性和鲁棒性得到了极大的提升。同时,一些新的方法,如Siamese网络、循环神经网络(RNN)等也被引入到目标追踪中,进一步推动了目标追踪技术的发展。
目前,目标追踪技术已广泛应用于军事、民用等众多领域,如战场监视、海洋监视、防空、空中攻击和火力控制等方面,以及海上交通管制、空中交通管制和卫星导航、定位与监视等方面。随着技术的不断发展,目标追踪技术将在未来发挥更加重要的作用。