刚性诱导的编队控制:理论与应用
1. 刚性诱导编队控制概述
刚性诱导编队控制旨在设计控制律,通过实现期望的约束条件来达成框架的特定配置。这些期望约束可以是智能体之间的边长度、边的方向,或者两条相邻边之间的角度。然而,仅仅实现期望约束并不一定能确保形成唯一的配置,还需要考虑编队的拓扑结构。
例如,有三个智能体受到两个约束:
- 方位向量 (g_{ki})
- 角度 (\theta_{ij}^k)
尽管这些约束条件得到满足,但配置并非唯一,具有灵活性。节点 (i) 和 (j) 的位置可以持续地放置在 (i’) 和 (j’),或者 (i’‘) 和 (j’‘)。但如果三个智能体有不同的约束,那么节点就不能通过平滑运动(图 5.9c 中无缩放运动)放置在不同位置。因此,为了形成唯一的编队,不仅要满足所需约束,编队的底层拓扑结构也应该是刚性的。刚性理论可从拓扑角度确保编队配置的唯一性。
2. 基于距离的编队控制
在基于距离的编队控制中,主要控制变量是智能体之间的距离。不过,传感变量是两个智能体之间的相对位移,这些相对位移是在未对齐的方向设置下的智能体之间的位移。而在基于共识的编队控制中,传感和控制变量都是在对齐方向设置下的位移。
考虑一组在二维空间((d = 2))中移动的智能体,每个智能体由单积分器动力学控制:
[
\dot{p}_i(t) = u_i(t)
]
位移向量 (z_{ij} = p_j - p_i) 可以用关联矩阵表示为 (z = \overline{H}p)。设边的期望距离为 (d_k),期望距离的平方为 (\overline{d} = [d
超级会员免费看
订阅专栏 解锁全文
5031

被折叠的 条评论
为什么被折叠?



