刚性诱导的编队控制解析
在多智能体系统中,编队控制是一个重要的研究领域,它涉及到如何使多个智能体协同工作,形成并保持特定的队形。本文将深入探讨刚性诱导的编队控制方法,包括基于距离、方位和角度的编队控制策略。
1. 刚性编队的局部收敛性
假设目标编队是无穷小刚性的,并且使用梯度下降控制律(5.29)。存在一个点 $p^ $ 在 $U_{des}^{eq}$ 中,以及 $p^ $ 的一个邻域 $U_{p^ }$,使得从任何 $p(0) \in U_{p^ }$ 出发,当 $t \to \infty$ 时,$p(t) \to p^*$。
证明过程基于引理 5.8 和 5.9,可知当 $t \to \infty$ 时,$\theta(t) \to 0$ 和 $\psi(t) \to 0$,这意味着 $p^r(t) \to 0$。进而可得 $\tilde{e}(z^r(t)) \to 0$,即达到了期望的智能体间距离。从(5.30)可知,当 $t \to \infty$ 时,$\dot{p}_i(t) \to 0$,这表明最终编队变得静止(无平移或无旋转)。
这些关于刚性编队局部收敛性的结果是使用中心流形理论得出的。不过,也有其他更简单的解决方案,例如在文献 [18] 中,使用智能体间距离动态进行分析,这样可以在不使用中心流形理论的情况下,在紧集上进行分析。
2. 基于方位的编队控制
方位向量是相对于一个对齐的参考方向确定的。考虑单积分器动力学(5.27),设期望的方位向量为 $g^ = [g^ k] {k \in {1,2,\cdots,
超级会员免费看
订阅专栏 解锁全文
5031

被折叠的 条评论
为什么被折叠?



