深度学习
文章平均质量分 79
gb4215287
这个作者很懒,什么都没留下…
展开
-
Python 计算机视觉(十一)—— OpenCV 图像形态学处理
参考的一些文章以及论文我都会给大家分享出来 —— 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了。大家一起学习,一起进步!加油!!目录前言(1)基本概念(2)读取图像信息1. 图像腐蚀(1)基本概念(2)代码实现2. 图像膨胀(1)基本概念(2)代码实现3. 图像开运算(1)基本概念(2)代码实现4. 图像闭运算(1)基本概念(2)代码实现5. 图像梯度运算转载 2021-11-05 17:04:13 · 181 阅读 · 0 评论 -
[pytorch] 通过一个例子分析torch.matmul矩阵与向量相乘的维度
pytorch文档中关于torch.matmul()的维度说明如下:If both tensors are 1-dimensional, the dot product (scalar) is returned. If both arguments are 2-dimensional, the matrix-matrix product is returned. If the first argument is 1-dimensional and the second argument is.转载 2020-08-13 14:41:35 · 282 阅读 · 0 评论 -
Pytorch中的variable, tensor与numpy相互转化
来源:https://blog.csdn.net/m0_37592397/article/details/883272481.将numpy矩阵转换为Tensor张量sub_ts = torch.from_numpy(sub_img) #sub_img为numpy类型12.将Tensor张量转化为numpy矩阵sub_np1 = sub_ts.numpy() #sub_ts为tensor张量13.将numpy转换为Variablesub_va转载 2020-08-13 11:21:08 · 237 阅读 · 0 评论 -
Variable、Tensor、Numpy的转换
Tensor <——> NumpyTensor与Numpy之间可以相互转换:代码:[plain]view plaincopyimporttorch importnumpyasnp data=np.array([[1,2,3,4,5],[6,7,8,9,10]]) print(data) #numpy->tensor data_tensor=torch.from_numpy(data) print(data_t...转载 2020-08-13 11:14:29 · 221 阅读 · 0 评论 -
Pytorch中的variable, tensor与numpy相互转化的方法
来源:https://blog.csdn.net/pengge0433/article/details/79459679在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现。1.加载需要用到的模块 import torch from torch.autograd import Variable import matplotlib.pyplot as .转载 2020-08-13 10:55:32 · 213 阅读 · 0 评论 -
深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一、CNN卷积神经网络的经典网络综述下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344二、LeNet-5网络输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个。10个类别(数字0-9的概率)LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重)。注:每个层有多个Feature.转载 2020-08-12 11:13:54 · 996 阅读 · 0 评论 -
为什么说神经网络可以逼近任意函数?
本文主要介绍神经网络万能逼近理论,并且通过PyTorch展示了两个案例来说明神经网络的函数逼近功能。大多数人理解“函数”为高等代数中形如“f(x)=2x”的表达式,但是实际上,函数只是输入到输出的映射关系,其形式是多样的。拿个人衣服尺寸预测来说,我们用机器学习来实现这个功能,就是将个人身高、体重、年龄作为输入,将衣服尺寸作为输出,实现输入-输出映射。具体来说,需要以下几个步骤:收集关键数据(大量人口的身高/体重/年龄,已经对应的实际服装尺寸)。 训练模型来实现输入-输出的映射逼近。转载 2020-08-11 18:08:54 · 1383 阅读 · 0 评论 -
基于OpenCV的简单人脸识别系统
目录 1. 调用库函数 2. 调用摄像头并设置窗口 3. 设置图片正负样本数据集的路径 4. 调用人脸检测器 5. 正负样本载入 6.提取人脸区域 7. 建立LBPH人脸识别模型 8. 实时检测 9. 测试结果 10. 不足之处 11. 改进方法 声明:本程序基于Python的OpenCV模块编程,利用opencv已有的人脸检测器和人脸识别器进行实时人脸识别1. 调用库函数import cv2import numpy as np1 .转载 2020-08-07 18:20:35 · 1838 阅读 · 1 评论 -
神经网络算法的相关知识
激活函数relu从上面也可以看出sigmoid计算量比较大,relu计算量小上面的224×224×64是卷积后的结果,pool后,也就是池化层后,就变成了112×112×64。分类会有全连接层,不分类有可能没有全连接层。...原创 2020-08-07 17:07:48 · 161 阅读 · 0 评论 -
Tensorflow实例3: 验证码图片的识别训练,每张图片有4个字母
学习目标目标说明验证码识别的原理说明全连接层的输出设置说明输出结果的损失、准确率计算说明验证码标签值的数字转换应用tf.one_hot实现验证码目标值的one_hot编码处理应用应用神经网络识别验证码图片1、识别效果2、验证码识别实战处理原始数据方便特征值、目标值读取训练设计网络结构网络的输出处理训练模型并预测原理分析1、目标标签分析考虑每个位置的...转载 2020-04-25 16:30:32 · 1158 阅读 · 0 评论