
深度学习
文章平均质量分 79
gb4215287
这个作者很懒,什么都没留下…
展开
-
Python 计算机视觉(十一)—— OpenCV 图像形态学处理
参考的一些文章以及论文我都会给大家分享出来 —— 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了。大家一起学习,一起进步!加油!! 目录 前言 (1)基本概念 (2)读取图像信息 1. 图像腐蚀 (1)基本概念 (2)代码实现 2. 图像膨胀 (1)基本概念 (2)代码实现 3. 图像开运算 (1)基本概念 (2)代码实现 4. 图像闭运算 (1)基本概念 (2)代码实现 5. 图像梯度运算转载 2021-11-05 17:04:13 · 201 阅读 · 0 评论 -
[pytorch] 通过一个例子分析torch.matmul矩阵与向量相乘的维度
pytorch文档中关于torch.matmul()的维度说明如下: If both tensors are 1-dimensional, the dot product (scalar) is returned. If both arguments are 2-dimensional, the matrix-matrix product is returned. If the first argument is 1-dimensional and the second argument is.转载 2020-08-13 14:41:35 · 305 阅读 · 0 评论 -
Pytorch中的variable, tensor与numpy相互转化
来源:https://blog.csdn.net/m0_37592397/article/details/88327248 1.将numpy矩阵转换为Tensor张量 sub_ts = torch.from_numpy(sub_img) #sub_img为numpy类型 1 2.将Tensor张量转化为numpy矩阵 sub_np1 = sub_ts.numpy() #sub_ts为tensor张量 1 3.将numpy转换为Variable sub_va转载 2020-08-13 11:21:08 · 265 阅读 · 0 评论 -
Variable、Tensor、Numpy的转换
Tensor <——> Numpy Tensor与Numpy之间可以相互转换: 代码: [plain]view plaincopy importtorch importnumpyasnp data=np.array([[1,2,3,4,5],[6,7,8,9,10]]) print(data) #numpy->tensor data_tensor=torch.from_numpy(data) print(data_t...转载 2020-08-13 11:14:29 · 249 阅读 · 0 评论 -
Pytorch中的variable, tensor与numpy相互转化的方法
来源:https://blog.csdn.net/pengge0433/article/details/79459679 在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现。 1.加载需要用到的模块 import torch from torch.autograd import Variable import matplotlib.pyplot as .转载 2020-08-13 10:55:32 · 236 阅读 · 0 评论 -
深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一、CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二、LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个。10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重)。注:每个层有多个Feature.转载 2020-08-12 11:13:54 · 1039 阅读 · 0 评论 -
为什么说神经网络可以逼近任意函数?
本文主要介绍神经网络万能逼近理论,并且通过PyTorch展示了两个案例来说明神经网络的函数逼近功能。 大多数人理解“函数”为高等代数中形如“f(x)=2x”的表达式,但是实际上,函数只是输入到输出的映射关系,其形式是多样的。 拿个人衣服尺寸预测来说,我们用机器学习来实现这个功能,就是将个人身高、体重、年龄作为输入,将衣服尺寸作为输出,实现输入-输出映射。 具体来说,需要以下几个步骤: 收集关键数据(大量人口的身高/体重/年龄,已经对应的实际服装尺寸)。 训练模型来实现输入-输出的映射逼近。转载 2020-08-11 18:08:54 · 1451 阅读 · 0 评论 -
基于OpenCV的简单人脸识别系统
目录 1. 调用库函数 2. 调用摄像头并设置窗口 3. 设置图片正负样本数据集的路径 4. 调用人脸检测器 5. 正负样本载入 6.提取人脸区域 7. 建立LBPH人脸识别模型 8. 实时检测 9. 测试结果 10. 不足之处 11. 改进方法 声明:本程序基于Python的OpenCV模块编程,利用opencv已有的人脸检测器和人脸识别器进行实时人脸识别 1. 调用库函数 import cv2 import numpy as np 1 .转载 2020-08-07 18:20:35 · 1903 阅读 · 1 评论 -
神经网络算法的相关知识
激活函数relu 从上面也可以看出sigmoid计算量比较大,relu计算量小 上面的224×224×64是卷积后的结果,pool后,也就是池化层后,就变成了112×112×64。 分类会有全连接层,不分类有可能没有全连接层。 ...原创 2020-08-07 17:07:48 · 189 阅读 · 0 评论 -
Tensorflow实例3: 验证码图片的识别训练,每张图片有4个字母
学习目标 目标 说明验证码识别的原理 说明全连接层的输出设置 说明输出结果的损失、准确率计算 说明验证码标签值的数字转换 应用tf.one_hot实现验证码目标值的one_hot编码处理 应用 应用神经网络识别验证码图片 1、识别效果 2、验证码识别实战 处理原始数据 方便特征值、目标值读取训练 设计网络结构 网络的输出处理 训练模型并预测 原理分析 1、目标标签分析 考虑每个位置的...转载 2020-04-25 16:30:32 · 1195 阅读 · 0 评论