关于表格型数据的数据挖掘(一)——爬虫

本篇主要承接上篇文章,介绍我们如何获取项目中的所需的数据。获取的方式很多,特别的,我们本次使用爬虫来尽可能方便地爬取我们的目标数据。文章末尾,我们将给出python代码供大家参考。 目录 需求分析 技术路线 具体实现 1. 需求分析 软件工程专业提到最多的就是“需求分析”,本次...

2018-07-04 21:50:05

阅读数 301

评论数 0

关于表格型数据的数据挖掘(总)

从本篇开始,我将会开启个人在实习阶段所做的项目经验。以此做好个人笔记,作为以后知识点的汇总,也希望能给各位做个大致的数据挖掘的思路。文章系列分为4篇:数据的获得及处理、频繁项集、聚类和关联规则。顺序是按照项目逻辑进行排序的,本篇我们将对整体的思路进行个说明。 目录 数据的获得及处...

2018-06-05 14:45:32

阅读数 403

评论数 0

python中的可变、不可变对象

好久没来写blog,期间一直在忙论文和实习的事情。准备等适应了,好好写一些深度学习框架和实现的文章,作为研二收尾的成果。 今天的motivation来自写python当中的一个问题,简化如下:(当我在做数据分析的时候,将数据存入列表或者字典中,传入函数后原来列表发生改变与否,关键...

2018-04-11 10:05:22

阅读数 709

评论数 0

数值分析和SVM讲解(上)

今天我们聊聊数值计算(优化)和SVM,首先本篇的数值计算我觉着更适合用“优化”来代替,因为我们将会以优化问题作为本篇数学部分主要的介绍内容,或者不够严谨的说法是,你也可以理解为对高数知识的巩固(比较前面的线性代数和概率论)。后半部分我们会将知识代入SVM中去进行介绍,需要说明的是,我们的介绍是提纲...

2017-11-07 17:14:23

阅读数 235

评论数 0

利用微信监管MXNet训练

最近一直在跟沐神学习MXNet轮子。论坛的小伙伴很不错,gluon的特效也很简单实用(听说效率和显存的利用率都比其他的要高)。无聊在知乎看到有人用用微信可以监管TF的训练结果——利用微信监管你的TF训练。国庆既然没得地方玩,就试着仿照作者做了个MXNet的微信监管。功能主要有: 设置参数,主要有l...

2017-10-03 10:36:29

阅读数 8380

评论数 0

数值计算和SVM讲解(下)

2.2.1 Original SVM 终于把所有的铺垫介绍完毕,本节开始我们正式进入SVM。 首先我们简单介绍一下朴素SVM,这个“朴素”一词是本人自己加上的。其意旨脱去加上核函数和SMO算法等等其他知识,展现最为“原始”的SVM思想。 根据2.1.2一节,我们知道SVM的基本架构(代价...

2017-09-01 19:09:59

阅读数 6395

评论数 0

数值计算和SVM讲解(中)

2.1 SVM预备 这一部分紧接上一篇《数值计算和SVM讲解(上)》。 之前一直考虑如何写这部分,如果按部就班地和前面一样,很多大神其实很早就已经写出了关于SVM的优质详解blog。而且,本篇开头我的预想是想借由SVM和各位读者分享一下机器学习的思路,所以第二部分我们首先介绍几部分与SVM相关...

2017-09-01 19:04:35

阅读数 11498

评论数 0

markdown转pdf

md文件转pdf现在markdown越来越成为IT行业的里面的主流,而不准备在code上多花功夫的我,自然希望借助其来多写点有用的文档。最近在学李沐大神的mxnet的框架时,作为学习资料,clone下来的都是md文件。在遇到打印的时候,发现各个md阅读器转换的编排方式大不相同(例如我用markdo...

2017-09-01 08:58:19

阅读数 21572

评论数 0

概率论及logistic回归讲解

概率论及logistic回归详解 上一篇我们介绍了线性代数的基本知识,并以PCA作为案例进行了讲解。在本篇中,我们依然按照相同的思路进行开展:首先复习一下概率的相关知识,最后以对率回归(对数几率回归)为案例进行讲解。 1. 概率论AI圣经《deep learning》一书把线性代数、概率与信息...

2017-08-17 16:29:30

阅读数 24501

评论数 3

菜鸟起飞——机器学习实战第一篇:总体介绍

前言终于开始了自己的csdn博客之旅。先自我介绍一下,我叫徐曦,目前是北京工业大学(北工大)软件工程的研究生新生,研究方向为数据分析。针对于此,我想通过这三年,充分学习有关机器学习的知识,目前的计划为:1.《机器学习实战》全书学习;2.python网络爬虫收集网络数据;3.深度学习;4.pytho...

2017-08-14 19:54:29

阅读数 31887

评论数 2

PCA线性代数讲解

线性代数及PCA详解 本章对最近学习的线性代数知识进行总结,最后以PCA为例运用线代中的相关知识讨论其中的原理。才疏学浅,各位有什么意见可以讨论,一起查缺补漏。 1. 线代基础对于深度学习,它需要一定的数学和机器学习基础,特别的,线性代数、概率与信息论和数值计算尤为重要(参见《deep lea...

2017-08-07 10:33:11

阅读数 25589

评论数 3

菜鸟起飞——机器学习实战第二篇:k-近邻算法

本文是第二篇kNN算法篇,我将从原理、数学模型、代码实现到案例分析这四个步骤来依次展开这一章所有的内容。 番外: 首先,我们说一下python代码如何运行。 我们保存以下代码为knn.pyfrom numpy import * #导入模块 import operator def creat...

2016-11-06 22:04:13

阅读数 11291

评论数 0

菜鸟起飞——机器学习实战第一篇:机器学习介绍

前言 终于开始了自己的csdn博客之旅。先自我介绍一下,我叫徐曦,目前是北京工业大学软件工程的研究生新生,研究方向为数据分析。针对于此,我想通过这三年,充分学习有关机器学习的知识,目前的计划为:1.《机器学习实战》全书学习;2.python网络爬虫收集网络数据;3.深度学习;4.python进一步...

2016-11-06 16:20:40

阅读数 770

评论数 0

机器学习数学基础

本章转自Mxnet文档,是当下机器学习必备的数学基础,可以供大家平时学习查阅。 数学基础 本节总结了本书中涉及到的有关线性代数、微分和概率的基础知识。为避免赘述本书未涉及的数学背景知识,本节中的少数定义稍有简化。 线性代数 以下分别概括了向量、矩阵、运算、范数、特征向量和特征值...

2018-07-16 15:36:04

阅读数 111

评论数 0

复试计划篇(下)

复试计划篇之调剂篇研成绩下来,有人欢喜有人愁。进入复试的毕竟是占较少的一部分,其余人往往因为各种因素导致进不了自己理想学校的复试,但这不能影响你进入研究生。如果你并不想二战,又想读个研究生。那么调剂则是你这时候的选择。就像复试一样,研究生调剂对我们大多数人而言是比较陌生的。很多人不知道从何下手,也...

2017-08-21 16:13:32

阅读数 3349

评论数 0

复试计划(中)

复试计划篇之导师篇如果说初试最关键的因素就是尘埃落地的分数的话,那么复试最关键的因素是什么?就是我们即将选择的导师。复试中,很大程度上是导师来选择自己的学生,主观性很强。所以从一定程度上,复试比初试显得更难、更加捉摸不定。我也相信,很多童鞋面对复试,心里没有底气,毕竟不像一套卷子发下来那样,按部就...

2017-08-21 16:11:48

阅读数 3201

评论数 0

复试计划篇(上)

初试结束了,我相信广大考生都送了一口气,毕竟一年或者半年的努力也是画上了一个句点。但对于考研而言,这条路还没有结束。相比于初试而言,复试对大家来说更为陌生。亲临现场,英语听力、口语和面试,都是不一样的考核形式。那么,我们该怎么开始复试的准备?学长我觉着,第一步仍然是制定出切实可行的计划。诚然每个人...

2017-08-21 16:10:27

阅读数 3283

评论数 0

考前定位(下)

考前定位之专硕学硕接下来我们谈谈研究生的两种,专硕和学硕的问题。很多童鞋对这两种研究生分不清,也会问许多关于这方面的问题。学长把这些问题总结如下,供大家参考:学硕和专硕哪个好?总体说来,没有什么好坏之分,学硕学硕侧重于学术研究,专硕专硕侧重于专业实践。这是两者定义上的区别,实际上现在学硕和专硕的比...

2017-08-21 16:07:21

阅读数 3147

评论数 0

考前定位(中)

考前定位之院校选择前面我们说过,从2014年开始,推免的力度大大加强。自身经历来说,普通一本可以保送一般重点,而211院校保送985也比以前容易得多。这一切原因在于,现在的研究生招生更倾向于生源,它把招生的名额更多的分配到了推免生身上。据我们搜集的资料表明,一线城市的985院校,例如北京大学、复旦...

2017-08-21 16:05:53

阅读数 3118

评论数 0

考前定位(上)

2017年的考研已经落下帷幕,对于很多参加这次考研的学子们来说,考完的感觉应该是身心俱疲。学长我也曾是这千军万马中的一员,也和很多正在或者准备考研之路的孩子们一样,能体会到这其中苦乐酸辣。当然,最为折磨的是,考研不同于高考。高考是一条已经铺好的道路,你只需和其他人一样,按部就班地走下去即可。而考研...

2017-08-21 16:03:33

阅读数 3084

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭