在银行做数据是一种什么体验?

银行数据人分为技术数据人和业务数据人。技术数据人处理数据提取、系统开发和运维,面临数据提取需求的挑战;业务数据人则处理业务需求,常需临时提取和分析数据。两者皆面临需求紧急、数据标准不一等问题。组织架构的调整可能有助于改善现状。
摘要由CSDN通过智能技术生成

银行数据人的分类

我们可以简单的把银行数据人分为两大类:技术数据人和业务数据人

技术数据人又可分为几类,一类是所有和数据相关的系统开发岗位和运维岗位

数据相关的系统既包括所有产生数据的业务系统,如核心系统、信贷系统、网银、手机银行等,也包括各类后端分析系统,报表系统以及存储和加工大量数据的系统,如数据平台、数据仓库、征信平台等。

这类技术数据人在数据人中处于核心地位,他们最了解源系统的表结构,只有他们能写出源系统的数据提取脚本,他们也最为忙碌,尤其是业务系统的相关技术数据人,平时主要负责系统的开发和运维工作,只有在下班后,继续处理数据提取的需求,编写业务系统的数据提取脚本。

另一类是数据中心的操作岗,这类数据人工作相对单纯,接收脚本、执行脚本、返回数据,他们平时的工作是监控系统的运行情况,在出现异常报警时按照运维手册排查问题,无法解决时上报问题并联系系统开发的同事协助解决。如今,很大一部分精力需要用来处理数据提取的需求。

还有一类越来越热门的数据分析师,通常是数学或统计学背景,擅长数据分析与建模,在获取到提取的生产数据后进行分析与建模,得到结论,从而指导业务决策。

随着数据提取需求的爆发式增长,一个新的岗位应运而生——数据需求岗

大中型银行由于数据提取的需求实在太多,单独设立一个部门或团队来处理数据提取需求,其中就有一部分人专门负责对接业务部门的数据需求。

这个岗位需要充分理解业务需求,把业务需求转化为技术语言,与开发岗沟通,同时还需要验证操作岗取回来的数据是否符合业务需求,以及数据分析师的建模结论是否符合业务预期。

其他还有很多技术数据人,数量不大,甚至没有专门的岗位,但是通常也负责数据相关的重要工作,如数据架构师(通常由系统架构师兼任),数据产品经理,数据管理、治理及标准管理的相关岗位,数据测试、质量管理相关的岗位,数据采集、外部数据采购相关的岗位,数据安全相关的岗位等等。

为了统一管理,有的银行把相关职能的岗位集中成立了单独的部门,如数据需求、分析、架构、提取等职能的岗位,集中成立数据实验室或大数据中心,专门负责处理各类数据需求;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值