一、为什么要有图
1、线性表局限于一个直接前驱和一个直接后继的关系;
2、树也只能有一个直接前驱也就是父节点;
3、当需要表示多对多的关系时,就用到了图;
二、图的概念
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。结点也可以称为顶点。如图:
三、图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
1、邻接矩阵
邻接矩阵是表示图形中顶点之间相领关系的矩阵,对于n个顶点的图而言,矩阵的row和col表示的是1....n个点。
2、邻接表
1)邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失。
2)邻接表的实现只关心存在的边,不关心不存在的边,因此没有空间浪费,邻接表由数组+链表组成。
上图说明
1)标号为0的结点的相关联的结点为1 2 3 4
2)标号为1的结点的相关联结点为0 4,
3)标号为2的结点相关联的结点为0 4 5
4)....
四、简单案例
要求:代码实现如下图的结构
- 思路分析
图的邻接矩阵表示可以通过二维数组来实现,其中数组的索引代表图中顶点的位置,数组的元素表示顶点之间的连接关系(例如,权重或者是否存在连接)。
创建了一个Graph
类来表示图,它包含一个vertices
变量来存储图中的顶点数量,以及一个二维数组adjMatrix
来存储邻接矩阵。addEdge
方法用于添加边,并同时设置两个方向的连接(因为是无向图)。printGraph
方法用于打印邻接矩阵,这里为了演示,我们使用"INF "
来表示两个顶点之间没有直接的连接(当然,也可以选择使用空格或其他方式来表示)。
- 代码实现
public class Graph {
// 顶点数量
private int vertices;
// 邻接矩阵,使用int[][]表示,初始化为无穷大或0(表示无连接)
// 这里使用0表示无连接,假设权重是整数
private int[][] adjMatrix;
// 构造函数
public Graph(int vertices) {
this.vertices = vertices;
// 初始化邻接矩阵,大小为vertices x vertices,所有元素初始化为0
adjMatrix = new int[vertices][vertices];
}
// 添加边
// 注意:无向图中,添加一条边意味着两个方向都要设置
public void addEdge(int v1, int v2, int weight) {
// 检查顶点有效性
if (v1 >= vertices || v2 >= vertices || v1 < 0 || v2 < 0) {
System.out.println("Invalid vertex!");
return;
}
// 由于是无向图,所以两个方向都要设置
adjMatrix[v1][v2] = weight;
adjMatrix[v2][v1] = weight;
}
// 打印邻接矩阵
public void printGraph() {
for (int i = 0; i < vertices; i++) {
for (int j = 0; j < vertices; j++) {
if (adjMatrix[i][j] == 0)
System.out.print("INF "); // 或者使用" "表示无连接
else
System.out.print(adjMatrix[i][j] + " ");
}
System.out.println();
}
}
// 测试代码
public static void main(String[] args) {
Graph g = new Graph(4);
g.addEdge(0, 1, 1);
g.addEdge(0, 2, 5);
g.addEdge(1, 2, 3);
g.addEdge(2, 3, 1);
g.addEdge(3, 1, 4);
g.printGraph();
}
}
五、图的深度优先搜索(Depth First Search)
1)深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
2)这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
3)深度优化搜索是一个递归的过程
深度优先遍历算法步骤:
1)访问初始结点v,并标记结点v为已访问;
2)查找结点v的第一个邻接结点w;
3)若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续;
4)若w未被访问,对w进行深度优化遍历递归(即把w当做另一个v,然后进行步骤123);
5)查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
使用递归实现深度优先遍历
import java.util.*;
public class Graph {
private int V; // 顶点的数量
private List> adj; // 邻接表
// 构造函数
public Graph(int v) {
V = v;
adj = new ArrayList<>(v);
for (int i = 0; i < v; i++) {
adj.add(new ArrayList<>());
}
}
// 添加边
public void addEdge(int v, int w) {
adj.get(v).add(w);
}
// DFS 递归实现
public void DFS(int v, boolean[] visited) {
visited[v] = true;
System.out.print(v + " ");
List children = adj.get(v);
for (Integer c : children) {
if (!visited[c]) {
DFS(c, visited);
}
}
}
// DFS 遍历整个图
public void DFSUtil() {
boolean[] visited = new boolean[V];
for (int i = 0; i < V; i++) {
if (!visited[i]) {
DFS(i, visited);
}
}
}
public static void main(String[] args) {
Graph g = new Graph(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
System.out.println("Depth First Traversal (starting from vertex 2):");
g.DFSUtil();
}
}
使用栈实现深度优先遍历
import java.util.*;
public class GraphWithStack {
private int V; // 顶点的数量
private List> adj; // 邻接表
public GraphWithStack(int v) {
V = v;
adj = new ArrayList<>(v);
for (int i = 0; i < v; i++) {
adj.add(new ArrayList<>());
}
}
public void addEdge(int v, int w) {
adj.get(v).add(w);
}
// 使用栈实现DFS
public void DFSWithStack(int start) {
Stack stack = new Stack<>();
boolean[] visited = new boolean[V];
stack.push(start);
visited[start] = true;
while (!stack.isEmpty()) {
int v = stack.pop();
System.out.print(v + " ");
List children = adj.get(v);
for (int i = children.size() - 1; i >= 0; i--) { // 逆序访问
int c = children.get(i);
if (!visited[c]) {
visited[c] = true;
stack.push(c);
}
}
}
}
public static void main(String[] args) {
GraphWithStack g = new GraphWithStack(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
System.out.println("Depth First Traversal using Stack:");
g.DFSWithStack(2); // 开始遍历的顶点为2
}
}