真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)

https://developer.nvidia.com/rdp/cudnn-archive

个人分类: 深度学习

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010801439/article/details/80483036

ubuntu 18.04 安装GPU +CUDA+cuDNN :

目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程。

1.实验室硬件配置(就需要而言):

        gpu : GeForce titan xp   12G 显存

        内存: 64G

        硬盘 :512 SDD +2T 机械 

        主板: 微星 x299 SLI PLUS 

    就配置而言,唯一有遗憾的就是主板,微星主板安装ubuntu 各种报小毛病,打电话给微星客服,客服说,这块主板供应商只在window 10 环境下进行过测试,但是,LINUX 系统,不知道行不行得通,让我自己想办法解决,-_-|| 。 此处还是建议要采购设备的主板选择技嘉或者华硕的,注意看主板是否支持安装linux操作系统。

2 .ubuntu18.04 系统安装

首先,建议制作U盘启动盘(点击此处)进行安装,安装时需要设定主板 grub+legacy方式(重启进bios,boot项里面的),博主在安装系统时,尝试安装了各种版本的ubuntu系统,包括14.01、14.03、16.01、16.03、16.04,均未成功,所有的问题,都是,系统安装到一半,直接就报错,无法安装,在网上查找了许久,据说是显卡的问题导致的,有相关文档说,18.04版本可以避免这个问题。于是,尝试安装ubuntu18.04版本,OK ,按照大神推荐的双硬盘分配方案(点击此处)进行安装配置。安装成功。

大家在安装好系统后,要记得更新源。

3.安装GPU(针对ubuntu18.04)

进入系统后,系统默认是使用主板上的集成显卡,那么,我们需要做的事就是安装上自己的独立显卡,也就是titan xp的驱动,网上有3中安装方法,给大家推荐一下,可以收藏一下如何安装NVIDIA显卡(点击此处)。

此处给大家示范其中一个方法(自己的显卡对应自己的信息,以下只是示例):

具备条件:root权限进行操作

修改root密码:

1.  $ sudo passwd    输入两次新密码
2.  $ su root       登陆 root账户

显卡驱动安装:

step .1首先,检测你的NVIDIA图形卡和推荐的驱动程序的模型。执行命令:

 

 
$ ubuntu-drivers devices

输出结果为:

 
  1. == /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==

  2. modalias : pci:v000010DEd00001180sv00001458sd0000353Cbc03sc00i00

  3. vendor : NVIDIA Corporation

  4. model : GK104 [GeForce GTX 680]

  5. driver : nvidia-304 - distro non-free

  6. driver : nvidia-340 - distro non-free

  7. driver : nvidia-384 - distro non-free recommended

  8. driver : xserver-xorg-video-nouveau - distro free builtin

  9.  
  10. == cpu-microcode.py ==

  11. driver : intel-microcode - distro free

从中可以看到,这里有一个设备是GTX 680 ,对应的驱动是NVIDIA -304,340,384 ,而推荐是安装384版本的驱动。

step.2,安装驱动

你可以选择,安装所有推荐的驱动,如下命令

 

$ sudo ubuntu-drivers autoinstall

你也可以选择,只安装其中一个驱动,命令如下

 

$ sudo apt install nvidia-340

OK 驱动安装完成,重新启动,查看系统配置---》详细信息---》关于   ,图形处理是否对应于自己的独立显卡。
 

4.安装CUDA(针对18.04)

安装CUDA 这里需要注意;

咱们需要根据cuDNN 来选择,如图,首先,cuda只能支持17.04,16.04的ubuntu 下载安装,但,实际上,有点类似于word一样(高版本word能打开低版本的word文件 .)18.04版本的系统,能够安装16.04版本对应的CUDA。

目前cuda 最高版本为9.2,且只支持 16.04,17.04 这两个系统,而且,我们安装完CUDA 之后还需要安装cuDNN。

那么cuDNN 的版本又有什么选择呢,如下

首先,根据cuDNN 的版本,目前,较为完善的,是cuDNN v7.0.5 ,其适用于 CUDA 9.1 版本,所以,咱们在选择安装cuda的时候,选择 CUDA 9.1。下载地址

按下图进行选择

对应的有一下四个文件,需要统统下载,第一个是主文件,后3个相当于补丁。

开始安装:

step .1  GCC 降级

由于CUDA 9.0仅支持GCC 6.0及以下版本,而Ubuntu 18.04预装GCC版本为7.3,

故手动进行降级:

 

sudo apt-get install gcc-4.8
sudo apt-get install g++-4.8

装完后进入到/usr/bin目录下

  $ls -l gcc* 

会显示以下结果

lrwxrwxrwx 1 root root 7th May 16 18:16 /usr/bin/gcc -> gcc-7.3

发现gcc链接到gcc-7.0, 需要将它改为链接到gcc-4.8,方法如下:

sudo mv gcc gcc.bak #备份
sudo ln -s gcc-4.8 gcc #重新链接

同理,对g++也做同样的修改:

ls -l g++*

lrwxrwxrwx 1 root root 7th May 15:17 g++ -> g++-7.3

需要将g++链接改为g++-4.8:

sudo mv g++ g++.bak
sudo ln -s g++-4.8 g++

再查看gcc和g++版本号:

gcc -v g++ -v

均显示gcc version 4.8 ,说明gcc 4.8安装成功。

step. 2 安装cuda ,及其补丁

输入命令安装Base Installer

sudo sh cuda_9.1.85_387.26_linux.run

需要注意的是,之前已经安装过显卡驱动程序,故在提问是否安装显卡驱动时选择no,其他 选择默认路径或者yes即可。

然后,继续执行以下操作安装3个 patch :

 

sudo sh cuda_9.1.85.1_linux.run
sudo sh cuda_9.1.85.2_linux.run
sudo sh cuda_9.1.85.3_linux.run

安装完毕之后,将以下两条加入.bashrc文件中.

sudo vim ~/.bashrc

export PATH=/usr/local/cuda-9.1/bin${PATH:+:$PATH}}      #注意,根据自己的版本,修改cuda-9.2/9.0...
export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} #注意,根据自己的版本,修改cuda-9.2/9.0...

 

OK ,那么,到这一步,cuda 就安装完成了

 

 

 

5.安装cuDNN(针对18.04)

cuDNN 的安装,就是将 cuDNN 包内的文件,拷贝到cuda文件夹中即可。

step.1按照第四点分析的内容,我们需要下载的cuDNN 版本为

cuDNN v7.0.0 library for liunx,下载地址(需要注册才能进行下载)

下载完毕后,切到默认的Downloads文件夹,可以看到 cudnn-9.1-linux-x64-v7.tgz 压缩包

先解压,然后将其中的内容复制到CUDA安装文件夹里面.

step.2 复制cuDNN内容到cuda相关文件夹内

sudo cp cuda/include/cudnn.h    /usr/local/cuda/include      注意,解压后的文件夹名称为cuda ,将对应文件复制到 /usr/local中的cuda内
sudo cp cuda/lib64/libcudnn*    /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h   /usr/local/cuda/lib64/libcudnn*

到此处,所以的安装就完成。

 

安装cuda、cudnn

博主尝试安装过9.1版和10.0版的cuda和cudnn,都没有成功。9.1版的可能是因为cudnn用的是9.0的导致没有编译成功。后来试用9.0版本编译成功,如果想要尝试9.0外的其他版本,可以参考链接

参考下载链接下载9.0版本的cuda和cudnn,博主下载的是16.04的本地运行文件runfile(local),需要下载一个运行程序和相应的补丁,所有文件如下:

cuda_9.0.176_384.81_linux.run

cuda_9.0.176.1_linux.run

cuda_9.0.176.2_linux.run

cuda_9.0.176.3_linux.run

cuda_9.0.176.4_linux.run

cudnn下载cudnn7.05 for 9.0,如果是9.1的cuda则需要选择for9.1的

 

 下载完所有文件就可以开始安装了,因为CUDA 9.0仅支持GCC 6.0及以下版本,Ubuntu18.04gcc,g++版本较高,所有先要替换成低版本的gcc,g++:

1.安装4.8版本

    cyg@cyg-ThinkPad-T450:~$ sudo apt-get install gcc-4.8

    cyg@cyg-ThinkPad-T450:~$ sudo apt-get install g++-4.8

2.cd到/usr/bin目录下,将它改为链接到gcc-4.8

    cyg@cyg-ThinkPad-T450:~$ ls -l gcc*

    cyg@cyg-ThinkPad-T450:~$ sudo mv gcc gcc.bak

    cyg@cyg-ThinkPad-T450:~$ sudo ln -s gcc-4.8 gcc

 对g++进行同样的操作

    cyg@cyg-ThinkPad-T450:~$ ls -l g++*
    cyg@cyg-ThinkPad-T450:~$ sudo mv g++ g++.bak
    cyg@cyg-ThinkPad-T450:~$ sudo ln -s g++-4.8 g++

查看版本:

    cyg@cyg-ThinkPad-T450:~$ gcc --version
    cyg@cyg-ThinkPad-T450:~$ g++ --version

 3.安装cuda9.0

    cyg@cyg-ThinkPad-T450:~$ sudo sh cuda_9.0.176_384.81_linux.run

    cyg@cyg-ThinkPad-T450:~$ sudo cuda_9.0.176.1_linux.run

    cyg@cyg-ThinkPad-T450:~$ sudo cuda_9.0.176.2_linux.run

    cyg@cyg-ThinkPad-T450:~$ sudo cuda_9.0.176.3_linux.run

    cyg@cyg-ThinkPad-T450:~$ sudo cuda_9.0.176.4_linux.run

一直按回车键安装,碰到是否安装Driver可以选择否(因为之前已经安装),Samples也可以不安装

4.添加环境变量,修改配置

    cyg@cyg-ThinkPad-T450:~$ sudo gedit ~/.bashrc

export CUDA_HOME=/usr/local/cuda-9.0
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export  PATH=${CUDA_HOME}/bin:${PATH}

5.设置环境变量和动态链接库,在命令行输入:

    cyg@cyg-ThinkPad-T450:~$ sudo gedit /etc/profile

export PATH=/usr/local/cuda/bin:$PATH

    cyg@cyg-ThinkPad-T450:~$ sudo gedit /etc/ld.so.conf.d/cuda.conf

/usr/local/cuda/lib64
 

 

7.安装cudnn

解压cudnn-9.0-linux-x64-v7.tgz

把相应文件复制到/usr/local/cuda/  CUDA安装文件夹里,

    cyg@cyg-ThinkPad-T450:~$ sudo cp cuda/include/cudnn.h    /usr/local/cuda/include

    cyg@cyg-ThinkPad-T450:~$ sudo cp cuda/lib64/libcudnn*    /usr/local/cuda/lib64

    cyg@cyg-ThinkPad-T450:~$ sudo chmod a+r /usr/local/cuda/include/cudnn.h   /usr/local/cuda/lib64/libcudnn*

6.修改后保存配置:(会导致 /usr/local/cuda/lib64/libcudnn.so.7 不是符号链接?)

    cyg@cyg-ThinkPad-T450:~$ sudo ldconfig

    cyg@cyg-ThinkPad-T450:~$ ln -sf   /usr/local/cuda-9.0/lib64/libcudnn.so.7.0.5  /usr/local/cuda-9.0/lib64/libcudnn.so.7

    cyg@cyg-ThinkPad-T450:~$ sudo ldconfig

至此,就可以安装Anaconda、pycharm、tensorflow等等工具了
3.安装Anaconda

下载Anaconda3-5.2.0 Linux版,cd到文件路径

    cyg@cyg-ThinkPad-T450:~$ bash Anaconda3-5.2.0-Linux-x86_64.sh -b

 

接下来就可以安装相应的软件,如:anaconda,pycharm tensorflow 等。。。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值