在解决数据倾斜问题时,我们经常会采用一种方式:mapjoin,按照hive的实现,mapjoin是将其中一张表在map的过程中加载到内存中,但是如果在join的表中,最小的表的数据量也不小的情况下。我们该怎么办呢?其中一种解决的方式是:将两张表需要实现排序(直接用hadoop解决),如下,两张表都是有序的。
接下来,我们将其中一张较大的表(比如说表1),输入到一个job中的mapper中,同时我们以文件的方式读取另外一张表(比如说表2),我们不会将表2加入到内存中,因为表2也是比较大的,那么怎么去join两张表呢?
我们以以上两个表为例,以上两个表都是有序的,那么我们在遍历的时候,会首先从表1中抽取一个key,与表2中的key进行对比,如果找到相应的key,我们就会将两个表的指针下移,如下图:
在下次查找的时候,表2将从指针处进行查找,因为两个表都是有序的,所以我们不会遗漏掉key。同时,如果我们发现,当在表1中的key在表2中找到一个比自身大的key,这个时候都没有找到和自身相同的key,那说明在表2中根本不存在相同的key,这个规则也是由两个表都是有序保证的。至此,就可以实现在两个表都比较大的情况下,也可以实现mapjoin了。