Pandas介绍和数据结构

本文详细介绍了Pandas库,包括其诞生背景、核心数据结构Series和DataFrame的创建与属性,以及多级索引(MultiIndex)的特性与创建。重点讲解了如何通过Series和DataFrame进行数据操作,如设置和修改索引,增强了数据的可读性和处理能力。
摘要由CSDN通过智能技术生成

一、Pandas介绍

在这里插入图片描述

  • 2008年WesMcKinney开发出的库
  • 专门用于数据挖掘的开源python库
  • 以Numpy为基础,借力Numpy模块在计算方面性能高的优势
  • 基于matplotlib,能够简便的画图
  • 独特的数据结构

为什么使用Pandas

  • 增强图表可读性

    回忆我们在numpy当中创建学生成绩表样式:

    返回结果:

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

如果数据展示为这样,可读性就会更友好:
在这里插入图片描述

  • 便捷的数据处理能力(NaN表示为空值)
    在这里插入图片描述

  • 读取文件方便

  • 封装了Matplotlib、Numpy的画图和计算

二、Series

Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。
在这里插入图片描述

2.1 Series的创建

# 导入pandas
import pandas as pd

pd.Series(data=None, index=None, dtype=None)
  • 参数:
    data:传入的数据,可以是ndarray、list等
    index:索引,必须是唯一的,且与数据的长度相等。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    dtype:数据的类型
  • 通过已有数据创建
    指定内容,默认索引
pd.Series(np.arange(10))
# 运行结果
0    0
1    1
2    2
3    3
4    4
5    5
6    6
7    7
8    8
9    9
dtype: int64
  • 指定索引
pd.Series([6.7,5.6,3,10,2], index=[1,2,3,4,5])
# 运行结果
1     6.7
2     5.6
3     3.0
4    10.0
5     2.0
dtype: float64
  • 通过字典数据创建
color_count = pd.Series({'red':100, 'blue':200, 'green': 500, 'yellow':1000})
color_count
# 运行结果
blue       200
green      500
red        100
yellow    1000
dtype: int64

2.2 Series的属性

为了更方便地操作Series对象中的索引和数据,Series中提供了两个属性index和values

  • index
color_count.index

# 结果
Index(['blue', 'green', 'red', 'yellow'], dtype='object')
  • values
color_count.values

# 结果
array([ 200,  500,  100, 1000])

也可以使用索引来获取数据:

color_count[2]

# 结果
100

三、DataFrame

DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引

行索引,表明不同行,横向索引,叫index,0轴,axis=0
列索引,表名不同列,纵向索引,叫columns,1轴,axis=1
在这里插入图片描述

3.1 DataFrame的创建

# 导入pandas
import pandas as pd

pd.DataFrame(data=None, index=None, columns=None)
  • 参数:
    index:行标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
    columns:列标签。如果没有传入索引参数,则默认会自动创建一个从0-N的整数索引。
  • 通过已有数据创建
    举例一:
pd.DataFrame(np.random.randn(2,3))

在这里插入图片描述
回忆咱们在前面直接使用np创建的数组显示方式,比较两者的区别。

举例二:创建学生成绩表

# 生成10名同学,5门功课的数据
score = np.random.randint(40, 100, (10, 5))

# 结果
array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])

但是这样的数据形式很难看到存储的是什么的样的数据,可读性比较差!!

问题:如何让数据更有意义的显示?

# 使用Pandas中的数据结构
score_df = pd.DataFrame(score)

在这里插入图片描述
给分数数据增加行列索引,显示效果更佳

  • 增加行、列索引
# 构造行索引序列
subjects = ["语文", "数学", "英语", "政治", "体育"]

# 构造列索引序列
stu = ['同学' + str(i) for i in range(score_df.shape[0])]

# 添加行索引
data = pd.DataFrame(score, columns=subjects, index=stu)

效果:
在这里插入图片描述

3.2 DataFrame的属性

  • shape
data.shape

# 结果
(10, 5)
  • index
    DataFrame的行索引列表
data.index

# 结果
Index(['同学0', '同学1', '同学2', '同学3', '同学4', '同学5', '同学6', '同学7', '同学8', '同学9'], dtype='object')
  • columns
    DataFrame的列索引列表
data.columns

# 结果
Index(['语文', '数学', '英语', '政治', '体育'], dtype='object')
  • values
    直接获取其中array的值
data.values

array([[92, 55, 78, 50, 50],
       [71, 76, 50, 48, 96],
       [45, 84, 78, 51, 68],
       [81, 91, 56, 54, 76],
       [86, 66, 77, 67, 95],
       [46, 86, 56, 61, 99],
       [46, 95, 44, 46, 56],
       [80, 50, 45, 65, 57],
       [41, 93, 90, 41, 97],
       [65, 83, 57, 57, 40]])
  • T
    转置— 行列索引互换
data.T

结果
在这里插入图片描述

  • head(5):显示前5行内容
    如果不补充参数,默认5行。填入参数N则显示前N行
data.head()

在这里插入图片描述

  • tail(5):显示后5行内容
    如果不补充参数,默认5行。填入参数N则显示后N行
data.tail()

3.3 DatatFrame索引的设置

需求:
在这里插入图片描述

3.3.1 修改行列索引值
  • 修改整个索引对象
#data.index=新的行索引  data.columns=新的列索引
stu = ["学生_" + str(i) for i in range(score_df.shape[0])]

# 必须整体全部修改
data.index = stu
  • 修改指定的某些索引
#data.rename(
#                            index={原行索引名1:新行索引名1,原行索引名2:新行索引名2,...}
#                            columns={原列索引名1:新列索引名1,原列索引名2:新列索引名2,...}
#)
data=data.rename(index={"学生3":"学生_3"},columns={"体育":"物理"})
3.3.2 重设索引
  • reset_index(drop=False)
    设置新的下标索引
    drop:默认为False,不删除原来索引,如果为True,删除原来的索引值
# 重置索引,drop=False
data.reset_index()

在这里插入图片描述

# 重置索引,drop=True 则将原索引删除
data.reset_index(drop=True)
3.3.3 以某列值设置为新的索引
  • set_index(keys, drop=True)
    keys : 列索引名成或者列索引名称的列表
    drop : boolean, default True.当做新的索引,删除原来的列

设置新索引案例

1、创建

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale':[55, 40, 84, 31]})

   month  sale  year
0  1      55    2012
1  4      40    2014
2  7      84    2013
3  10     31    2014

2、以月份设置新的索引

df.set_index('month')
       sale  year
month
1      55    2012
4      40    2014
7      84    2013
10     31    2014

3、设置多个索引,以年和月份

df = df.set_index(['year', 'month'])
df
            sale
year  month
2012  1     55
2014  4     40
2013  7     84
2014  10    31

注:通过刚才的设置,这样DataFrame就变成了一个具有MultiIndex的DataFrame。

四、MultiIndex

MultiIndex是三维(多维)的数据结构;

多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。

4.1 multiIndex的特性

打印刚才的df的行索引结果

df.index

MultiIndex(levels=[[2012, 2013, 2014], [1, 4, 7, 10]],
           labels=[[0, 2, 1, 2], [0, 1, 2, 3]],
           names=['year', 'month'])

多级或分层索引对象。

  • index属性
    names:levels的名称
    levels:每个level的元组值
df.index.names
# FrozenList(['year', 'month'])

df.index.levels
# FrozenList([[1, 2], [1, 4, 7, 10]])

4.2 multiIndex的创建

arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))

# 结果
MultiIndex(levels=[[1, 2], ['blue', 'red']],
           codes=[[0, 0, 1, 1], [1, 0, 1, 0]],
           names=['number', 'color'])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值