快速幂(转载)

前言
本题的方法被称为「快速幂算法」,有递归和迭代两个版本。这篇题解会从递归版本的开始讲起,再逐步引出迭代的版本。

当指数 nnn 为负数时,我们可以计算 x−nx^{-n}x 
−n
  再取倒数得到结果,因此我们只需要考虑 nnn 为自然数的情况。

方法一:快速幂 + 递归
「快速幂算法」的本质是分治算法。举个例子,如果我们要计算 x64x^{64}x 
64
 ,我们可以按照:

x→x2→x4→x8→x16→x32→x64x \to x^2 \to x^4 \to x^8 \to x^{16} \to x^{32} \to x^{64}
x→x 
2
 →x 
4
 →x 
8
 →x 
16
 →x 
32
 →x 
64
 
的顺序,从 xxx 开始,每次直接把上一次的结果进行平方,计算 666 次就可以得到 x64x^{64}x 
64
  的值,而不需要对 xxx 乘 636363 次 xxx。

再举一个例子,如果我们要计算 x77x^{77}x 
77
 ,我们可以按照:

x→x2→x4→x9→x19→x38→x77x \to x^2 \to x^4 \to x^9 \to x^{19} \to x^{38} \to x^{77}
x→x 
2
 →x 
4
 →x 
9
 →x 
19
 →x 
38
 →x 
77
 
的顺序,在 x→x2x \to x^2x→x 
2
 ,x2→x4x^2 \to x^4x 
2
 →x 
4
 ,x19→x38x^{19} \to x^{38}x 
19
 →x 
38
  这些步骤中,我们直接把上一次的结果进行平方,而在 x4→x9x^4 \to x^9x 
4
 →x 
9
 ,x9→x19x^9 \to x^{19}x 
9
 →x 
19
 ,x38→x77x^{38} \to x^{77}x 
38
 →x 
77
  这些步骤中,我们把上一次的结果进行平方后,还要额外乘一个 xxx。

直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘 xxx。但如果我们从右往左看,分治的思想就十分明显了:

当我们要计算 xnx^nx 
n
  时,我们可以先递归地计算出 y=x⌊n/2⌋y = x^{\lfloor n/2 \rfloor}y=x 
⌊n/2⌋
 ,其中 ⌊a⌋\lfloor a \rfloor⌊a⌋ 表示对 aaa 进行下取整;

根据递归计算的结果,如果 nnn 为偶数,那么 xn=y2x^n = y^2x 
n
 =y 
2
 ;如果 nnn 为奇数,那么 xn=y2×xx^n = y^2 \times xx 
n
 =y 
2
 ×x;

递归的边界为 n=0n = 0n=0,任意数的 000 次方均为 111。

由于每次递归都会使得指数减少一半,因此递归的层数为 O(log⁡n)O(\log n)O(logn),算法可以在很快的时间内得到结果。

C++
Java
Python3
Golang
class Solution {
public:
    double quickMul(double x, long long N) {
        if (N == 0) {
            return 1.0;
        }
        double y = quickMul(x, N / 2);
        return N % 2 == 0 ? y * y : y * y * x;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};
复杂度分析

时间复杂度:O(log⁡n)O(\log n)O(logn),即为递归的层数。

空间复杂度:O(log⁡n)O(\log n)O(logn),即为递归的层数。这是由于递归的函数调用会使用栈空间。

方法二:快速幂 + 迭代
由于递归需要使用额外的栈空间,我们试着将递归转写为迭代。在方法一中,我们也提到过,从左到右进行推导是不容易的,因为我们不知道是否需要额外乘 xxx。但我们不妨找一找规律,看看哪些地方额外乘了 xxx,并且它们对答案产生了什么影响。

我们还是以 x77x^{77}x 
77
  作为例子:

x→x2→x4→+x9→+x19→x38→+x77x \to x^2 \to x^4 \to^+ x^9 \to^+ x^{19} \to x^{38} \to^+ x^{77}
x→x 
2
 →x 
4
 → 
+
 x 
9
 → 
+
 x 
19
 →x 
38
 → 
+
 x 
77
 
并且把需要额外乘 xxx 的步骤打上了 +++ 标记。可以发现:

x38→+x77x^{38} \to^+ x^{77}x 
38
 → 
+
 x 
77
  中额外乘的 xxx 在 x77x^{77}x 
77
  中贡献了 xxx;

x9→+x19x^9 \to^+ x^{19}x 
9
 → 
+
 x 
19
  中额外乘的 xxx 在之后被平方了 222 次,因此在 x77x^{77}x 
77
  中贡献了 x22=x4x^{2^2} = x^4x 

2
 
 =x 
4
 ;

x4→+x9x^4 \to^+ x^9x 
4
 → 
+
 x 
9
  中额外乘的 xxx 在之后被平方了 333 次,因此在 x77x^{77}x 
77
  中贡献了 x23=x8x^{2^3} = x^8x 

3
 
 =x 
8
 ;

最初的 xxx 在之后被平方了 666 次,因此在 x77x^{77}x 
77
  中贡献了 x26=x64x^{2^6} = x^{64}x 

6
 
 =x 
64
 。

我们把这些贡献相乘,x×x4×x8×x64x \times x^4 \times x^8 \times x^{64}x×x 
4
 ×x 
8
 ×x 
64
  恰好等于 x77x^{77}x 
77
 。而这些贡献的指数部分又是什么呢?它们都是 222 的幂次,这是因为每个额外乘的 xxx 在之后都会被平方若干次。而这些指数 111,444,888 和 646464,恰好就对应了 777777 的二进制表示 (1001101)2(1001101)_2(1001101) 
2
​    
  中的每个 111!

因此我们借助整数的二进制拆分,就可以得到迭代计算的方法,一般地,如果整数 nnn 的二进制拆分为

n=2i0+2i1+⋯+2ikn = 2^{i_0} + 2^{i_1} + \cdots + 2^{i_k}
n=2 

0
​    
 
 +2 

1
​    
 
 +⋯+2 

k
​    
 
 
那么

xn=x2i0×x2i1×⋯×x2ikx^n = x^{2^{i_0}} \times x^{2^{i_1}} \times \cdots \times x^{2^{i_k}}

n
 =x 


0
​    
 
 
 ×x 


1
​    
 
 
 ×⋯×x 


k
​    
 
 
 
这样以来,我们从 xxx 开始不断地进行平方,得到 x2,x4,x8,x16,⋯x^2, x^4, x^8, x^{16}, \cdotsx 
2
 ,x 
4
 ,x 
8
 ,x 
16
 ,⋯,如果 nnn 的第 kkk 个(从右往左,从 000 开始计数)二进制位为 111,那么我们就将对应的贡献 x2kx^{2^k}x 

k
 
 计入答案。

下面的代码给出了详细的注释。

C++
Java
Python3
Golang
class Solution {
public:
    double quickMul(double x, long long N) {
        double ans = 1.0;
        // 贡献的初始值为 x
        double x_contribute = x;
        // 在对 N 进行二进制拆分的同时计算答案
        while (N > 0) {
            if (N % 2 == 1) {
                // 如果 N 二进制表示的最低位为 1,那么需要计入贡献
                ans *= x_contribute;
            }
            // 将贡献不断地平方
            x_contribute *= x_contribute;
            // 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
            N /= 2;
        }
        return ans;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};
复杂度分析

时间复杂度:O(log⁡n)O(\log n)O(logn),即为对 nnn 进行二进制拆分的时间复杂度。

空间复杂度:O(1)O(1)O(1)。

作者:力扣官方题解
链接:https://leetcode.cn/problems/powx-n/solutions/238559/powx-n-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值