一道题了解朴素贝叶斯

朴素贝叶斯(naive Bayes)法是一种基于概率的机器学习算法。它基于贝叶斯定理,并假设特征之间相互独立(这就是“朴素”的来源)。朴素贝叶斯法实现简单,
学习与预测的效率都很高,是一种常用方法,在许多场景下表现得非常好,如文本分类(垃圾邮件检测)、情感分析等。

朴素贝叶斯法的核心是贝叶斯定理:

P ( Y ∣ X ) = P ( X ∣ Y ) P ( Y ) P ( X ) P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} P(YX)=P(X)P(XY)P(Y)

P ( Y ∣ X ) P(Y \mid X) P(YX): 后验概率,给定特征 X X X时类的概率。
P ( X ∣ Y ) P(X \mid Y) P(XY): 条件概率,类 Y Y Y包含特征 X X X的概率。
P ( Y ) P(Y) P(Y): 先验概率,类Y的概率。
P ( X ) P(X) P(X): 特征X的概率。

朴素贝叶斯假设所有特征“相互独立”,这使得我们无需考虑特征之间复杂的依赖关系,极大简化了条件概率的计算:

P ( X 1 , X 2 , ⋯   , X n ∣ Y ) = P ( X 1 ∣ Y ) ⋅ P ( X 2 ∣ Y ) ⋯ P ( X n ∣ Y ) = ∏ j = 1 n P ( X j ∣ Y ) \begin{aligned} P(X_1,X_2, \cdots , X_n \mid Y) &= P(X_1 \mid Y) \cdot P(X_2 \mid Y) \cdots P(X_n|Y) \\ &= \prod_{j=1}^{n} P(X_j \mid Y) \end{aligned} P(X1,X2,,XnY)=P(X1Y)P(X2Y)P(XnY)=j=1nP(XjY)

我们通过例题来了解下朴素贝叶斯算法:

编号 大小 颜色 形状 好果 1 小 青色 非规则 否 2 大 红色 非规则 是 3 大 红色 圆形 是 4 大 青色 圆形 否 5 大 青色 非规则 否 6 小 红色 圆形 是 7 大 青色 非规则 否 8 小 红色 非规则 否 9 小 青色 圆形 否 10 大 红色 圆形 是 \begin{matrix} \text{编号} & \text{大小} & \text{颜色} & \text{形状} & \text{好果} \\ 1 & \text{小} & \text{青色} & \text{非规则} & \text{否} \\ 2 & \text{大} & \text{红色} & \text{非规则} & \text{是} \\ 3 & \text{大} & \text{红色} & \text{圆形} & \text{是} \\ 4 & \text{大} & \text{青色} & \text{圆形} & \text{否} \\ 5 & \text{大} & \text{青色} & \text{非规则} & \text{否} \\ 6 & \text{小} & \text{红色} & \text{圆形} & \text{是} \\ 7 & \text{大} & \text{青色} & \text{非规则} & \text{否} \\ 8 & \text{小} & \text{红色} & \text{非规则} & \text{否} \\ 9 & \text{小} & \text{青色} & \text{圆形} & \text{否} \\ 10 & \text{大} & \text{红色} & \text{圆形} & \text{是} \end{matrix} 编号12345678910大小颜色青色红色红色青色青色红色青色红色青色红色

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值