关于逻辑回归的见解

逻辑回归通过将线性回归的输出映射到[0,1]\left[0,1\right][0,1]区间,来表示某个类别的概率。也就是其本质是先通过线性回归的预测值y\boldsymbol{y}y输入到映射函数,既将线性回归的输出通过映射函数映射到[0,1]\left[0,1\right][0,1].常用的映射函数是sigmoid函数,其图像:

在这里插入图片描述

关于sigmoid函数其形式如下:
f(x)=11+e−x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1

sigmoid函数的导数特性:
f′(x)=−1(1+ex)2⋅−ex=ex(1+ex)2=11+ex⋅ex1+ex=11+ex⋅1+ex−11+ex=11+ex⋅(1−11+ex)=f(x)(1−f(x)) \begin{align*} f'(x) &= -\frac{1}{\left(1 + e^{x}\right)^2} \cdot -e^x\\ &= \frac{e^x}{\left(1 + e^{x}\right)^2} \\ &= \frac{1}{1 + e^{x}} \cdot \frac{e^{x}}{1 + e^{x}} \\ &= \frac{1}{1 + e^{x}} \cdot \frac{1 + e^{x} - 1}{1 + e^{x}} \\ &= \frac{1}{1 + e^{x}} \cdot \left(1 - \frac{1}{1 + e^{x}}\right) \\ &= f(\mathbf{x})\left(1-f(\mathbf{x})\right) \end{align*} f(x)=(1+ex)21ex=(1+ex)2ex=1+ex11+exex=1+ex11+ex1+ex1=1+ex1(11+ex1)=f(x)(1f(x))

逻辑回归结果可表示为:

P(y=1∣x)=11+e−(β0+β1x1+β2x2+⋯+βnxn)=11+e−(βTx) P(y=1 \mid \mathbf{x}) = \dfrac{1}{1 + e^{-\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \right)}} = \dfrac{1}{1 + e^{-\left(\beta^T x\right)}} P(y=1x)=1+e(β0+β1x1+β2x2++βnxn)1=1+e(βTx)1

其中−(β0+β1x1+β2x2+⋯+βnxn)-\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \right)(β0+β1x1+β2x2+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值