下午去听了我们组博士的答辩。第一个挺的是FW的。看了他的PPT 发现自己硕士的PPT 写的很烂。基本上大家一般都有四篇以上的文章,然后每个文章是一个主题,当然也不排除在一个主题下面有多篇文章。他对原有的方法基本上做了一个总结,比如现有的什么方法。每个方法有什么优点。什么缺点(用红色的字体标出来),然后针对这个缺点我们提出了什么方法。来解决这个问题。如果这个问题有多个缺点,然后我们会根据一个缺点来改进。他在每一个PPT的下面都列了自己的参考文献。每一页的PPT 写的感觉逻辑性很强,内容比较多但是并不给人很乱的感觉。很值得我学习。对于每个问题,都写出目标函数。然后解法,自己的改进。特别的清楚。感觉他的文章比较多。看上去有十来篇paper。牛人。我现在用的主机是此师兄之前的主机。希望我也能有好运气。
LY的我没有听的比较完整。感觉她做了一些工作是对图片里面的东西贴标签的工作。
感觉她的部分工作跟NB 的很像,但是NB 答辩的时候我睡着了。只记得有两次爆笑。最后我自己实在不好意思。就从会议室出来了。
QZ 的工作我也没有完全听完,感觉是做图像的缩络图。一些图像扭曲之类的。还没有答辩的时候是基于深度学习的工作。
对自己工作的启发:看到一个数学公式要赋予它物理意义,每一部分代表什么意思。数学的推导也比较重要。看到数学公式,首先是不要怕,一种心平气和的态度来对待它。对于看不懂的文章。多看几遍。想明白。事情就比较好做了。多做多想问题。才是科研的王道。
老师提问题的时候也会问你有没有ImageNet 的上的结果等。结果是多少,如果你认为在提高的话,可能在那个方面进行提高等等。