转载自:http://blog.csdn.net/u010454729/article/details/48274955
第五章 Logistic回归
回归:对一些数据点,算法训练出直线参数,得到最佳拟合直线,能够对这些点很好的拟合。
训练分类器主要是寻找最佳拟合参数,故为最优化算法。
5.1 基于Logistic回归和sigmoid函数的分类
实现Logistic回归分类器:在每个特征上都乘以一个回归系数,然后把所有的结果值相加,总和带入sigmoid函数,其结果大于0.5分为第0类,结果小于0.5分为第0类。
sigmoid函数公式:
Figure 5-1: sigmoid函数公式
Figure 5-2: sigmoid曲线
sigmoid函数具有很好的性质,如其导数可以用其本身表示等等。
5.2 基于最优化方法的最佳回归系数确定
sigmoid函数输入z:
其可以写成z=w.T*x,向量x为分类器的输入数据, w为训练器寻找的最佳参数。
梯度上升法:
思想:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。
函数f(x,y)的梯度:
沿x的方向移动,沿y的方向移动,最后能够到达最优点,但是f(x,y)在待计算点需要有定义并且可微。
梯度算子总是指向函数值增长最快的方向。移动方向为梯度方向,移动量大小需要乘以一个参数,称之为步长。参数迭代公式为:
公式可一直执行,直到某个条件停止为止。如迭代次数或者算法达到某个可以允许的误差范围。
训练算法:使用梯度上升找到最佳参数
梯度上升法伪代码:
数据点:
算法:
- def loadDataSet():
- dataMat = []
- labelMat = []
- fr = open("testSet.txt")
- for line in fr.readlines():
- lineArr = line.strip().split("\t")
- dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #对应三个参数,第一个对应着常熟
- labelMat.append(int(lineArr[2]))
- return dataMat, labelMat
- def sigmoid(inX):
- return 1.0/(1+exp(-inX))
- def gradAscent(dataMatIn, classLabels):
- '''''Logistic回归梯度上升优化算法'''
- dataMatrix = mat(dataMatIn) #100行3列
- labelMat = mat(classLabels).transpose() #transpose()将1行100列的矩阵转为100行1列mat(classLabels).T也可破
- m,n = shape(dataMatrix) #m=100,n=3
- alpha = 0.001
- maxCycles = 500
- weights = ones((n,1)) #100行1列
- for k in range(maxCycles):
- h = sigmoid(dataMatrix*weights) #dataMatrix*weights,100×3和3×1的矩阵相乘,得到100×1的矩阵
- error = (labelMat - h)
- weights = weights + alpha*dataMatrix.transpose()*error
- return weights
- dataMat, labelMat = loadDataSet()
- weights = gradAscent(dataMat, labelMat)
- print weights
Figure5-4: 算法参数
分析数据:画出决策边界
上一步确定了回归系数,确定了不同类别数据之间的分割线。这一步画出分割线:
- def plotBestFit(weights):
- dataMat, labelMat = loadDataSet()
- dataArr = array(dataMat) #将每个数据点的x,y坐标存为矩阵的形式
- n = shape(dataArr)[0] #取其行数,也即数据点的个数
- #======画数据点
- xcord1 = []
- ycord1 = []
- xcord2 = []
- ycord2 = []
- for i in range(n):
- if int(labelMat[i]) == 1: #若是正例,存到(x1,y1)中
- xcord1.append(dataArr[i,1])
- ycord1.append(dataArr[i,2])
- else:
- xcord2.append(dataArr[i,1])
- ycord2.append(dataArr[i,2])
- fig = plt.figure()
- ax = fig.add_subplot(111)
- ax.scatter(xcord1,ycord1,s=30,c="red",marker = "s")
- ax.scatter(xcord2,ycord2,s=30,c="green")
- #============
- x = arange(-3.0,3.0,0.1) #x为numpy.arange格式,并且以0.1为步长从-3.0到3.0切分。
- #拟合曲线为0 = w0*x0+w1*x1+w2*x2, 故x2 = (-w0*x0-w1*x1)/w2, x0为1,x1为x, x2为y,故有
- y = (-weights[0] - weights[1]*x)/weights[2]
- #x为array格式,weights为matrix格式,故需要调用getA()方法,其将matrix()格式矩阵转为array()格式
- ax.plot(x,y)
- plt.xlabel("X1")
- plt.ylabel("X2")
- plt.show()
- dataMat, labelMat = loadDataSet()
- weights = gradAscent(dataMat, labelMat)
- #getA()方法,其将matrix()格式矩阵转为array()格式,type(weights),type(weights.getA())可观察到。
- plotBestFit(weights.getA())
Figure 5-5: 分割线
训练算法:随机梯度上升
梯度上升算法中,每次更新回归系数需要遍历整个数据集。数据量若是大了,计算复杂度较高。
改进方法:一次仅用一个样本点更新回归系数,这便是随机梯度上升算法。
伪代码:
代码:
- def stocGradAscent0(dataMatrix, classLabels):
- '''''随机梯度上升算法'''
- m,n = shape(dataMatrix)
- alpha = 0.01
- weights = ones(n)
- for i in range(m):
- h = sigmoid(sum(dataMatrix[i]*weights)) #此处h为具体数值
- error = classLabels[i] - h #error也为具体数值
- weights = weights + alpha*error*dataMatrix[i] #每次对一个样本进行处理,更新权值
- return weights
- dataArr, labelMat = loadDataSet()
- weights = stocGradAscent0(array(dataArr), labelMat)
- plotBestFit(weights)
Figure 5-6: 随机梯度上升算法分割线
结果显示其效果还不如梯度上升算法,不过不一样,梯度上升算法,500次迭代每次都用上了所有数据,而随机梯度上升算法总共也只用了500次。需要对其进行改进:
- def stocGradAscent1(dataMatrix, classLabels, numIter=150):
- '''''改进的随机梯度上升算法,收敛得更快'''
- m,n = shape(dataMatrix)
- weights = ones(n)
- for j in range(numIter):
- dataIndex = range(m)
- for i in range(m):
- alpha = 4/(1.0+i+j)+0.0001 #alpha迭代次数不断变小,1.非严格下降,2.不会到0
- #随机选取样本更新系数weights,每次随机从列表中选取一个值,用过后删除它再进行下一次迭代
- randIndex = int(random.uniform(0, len(dataIndex)))#每次迭代改变dataIndex,而m是不变的,故不用unifor(0, m)
- h = sigmoid(sum(dataMatrix[randIndex]*weights))
- error = classLabels[randIndex] - h
- weights = weights + alpha*error*dataMatrix[randIndex]
- del(dataIndex[randIndex])
- return weights
- dataArr, labelMat = loadDataSet()
- weights = stocGradAscent1(array(dataArr), labelMat)
- plotBestFit(weights)
Figure 5-7: 改进的随机梯度上升算法分割线
5.3 示例:从疝气病症预测病马的死亡率
5.4 小结
Logistic回归:
优点: 计算代价不高,易于理解和实现。
缺点: 容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。