基于图像导数运算的滤波器

Sobel算子

又称为一阶微分算子、求导算子,在水平和垂直两个方向上求导,得到图像X与Y方向的梯度图像。

特点

离散微分算子,用来计算图像灰度函数的近似梯度;

该算子集合高斯平滑和微分求导;

简单介绍

Sobel算子就是图像在垂直和水平方向变化的速度,在数学中可以称为梯度

Sobel算子在水平和垂直方向计算像素值的差分,得到像素梯度的近似值,在像素周围的一定范围内进行计算,以减少噪声带来的影响。

在滤波器方向上像素变化强度变化大的区域将得到较大的值,较平坦的区域将得到较小的值,因此,计算图像导数的滤波器被称为高通滤波器。

导数滤波器属于高通滤波器,因此它们往往会放大图像中的噪声和细小的高对比度细节。为了减少这些高频成分的影响,最好在应用导数滤波器之前对图像做平滑化处理

平滑化图像与计算导数这两个步骤是可以合并的,只需选用合适的内核

由于“项的累加和的导数等于项的导数的累加和”,可以先对内核求导数,然后与图像卷积

Laplace算子

通过计算二阶导数来度量图像的曲率。

二阶导数在变化最大处(即边缘处)为零,由此可以通过二阶导数提取边缘。

追踪过零点曲线

拉普拉斯值从正数过渡到负数(反之亦然),这个位置很可能就是边缘,可以对拉普拉斯图像阈值化,得到正数与负数之间的分割区域,这两个区域之间的边界就是过零点。因此,可以用形态学运算来提取这些轮廓,也就是用拉普拉斯图像减去膨胀后的图像。

拉普拉斯过零点方法检测了所有的边缘,不能区分强边缘和弱边缘,拉普拉斯算子对噪声非常敏感,有些边缘是由于压缩失真造成的

在实际检测边缘时,需要把拉普拉斯算子与其他算子结合使用

Laplace算子应用:

通过从图像中减去它的拉普拉斯图像,可以增强图像的对比度

 

参考书籍:《OpenCV 计算机视觉编程攻略》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值