Sobel算子
又称为一阶微分算子、求导算子,在水平和垂直两个方向上求导,得到图像X与Y方向的梯度图像。
特点
离散微分算子,用来计算图像灰度函数的近似梯度;
该算子集合高斯平滑和微分求导;
简单介绍
Sobel算子就是图像在垂直和水平方向变化的速度,在数学中可以称为梯度。
Sobel算子在水平和垂直方向计算像素值的差分,得到像素梯度的近似值,在像素周围的一定范围内进行计算,以减少噪声带来的影响。
在滤波器方向上像素变化强度变化大的区域将得到较大的值,较平坦的区域将得到较小的值,因此,计算图像导数的滤波器被称为高通滤波器。
导数滤波器属于高通滤波器,因此它们往往会放大图像中的噪声和细小的高对比度细节。为了减少这些高频成分的影响,最好在应用导数滤波器之前对图像做平滑化处理。
平滑化图像与计算导数这两个步骤是可以合并的,只需选用合适的内核
由于“项的累加和的导数等于项的导数的累加和”,可以先对内核求导数,然后与图像卷积。
Laplace算子
通过计算二阶导数来度量图像的曲率。
二阶导数在变化最大处(即边缘处)为零,由此可以通过二阶导数提取边缘。
追踪过零点曲线
拉普拉斯值从正数过渡到负数(反之亦然),这个位置很可能就是边缘,可以对拉普拉斯图像阈值化,得到正数与负数之间的分割区域,这两个区域之间的边界就是过零点。因此,可以用形态学运算来提取这些轮廓,也就是用拉普拉斯图像减去膨胀后的图像。
拉普拉斯过零点方法检测了所有的边缘,不能区分强边缘和弱边缘,拉普拉斯算子对噪声非常敏感,有些边缘是由于压缩失真造成的
在实际检测边缘时,需要把拉普拉斯算子与其他算子结合使用
Laplace算子应用:
通过从图像中减去它的拉普拉斯图像,可以增强图像的对比度
参考书籍:《OpenCV 计算机视觉编程攻略》
7284

被折叠的 条评论
为什么被折叠?



