Numpy线性代数-numpy.vdot()

这篇博客介绍了NumPy库中的线性代数函数,包括点积、向量点积、内积、行列式、矩阵乘法、矩阵逆及线性方程组求解等。通过实例展示了如何使用numpy.dot()、numpy.vdot()、numpy.inner()、numpy.determinant()、numpy.matmul()、numpy.inv()和numpy.solve()等函数。这些函数对于处理线性代数问题非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

N u m P y NumPy NumPy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明。

函数

内容

dot

两数组的点积

vdot

两向量的点积

inner

两数组的内积

determinant

数组的行列式

matmul

两数组的矩阵积

inv

求矩阵的逆

solve

求解线性矩阵方程

相关函数介绍

numpy.dot()

numpy.vdot()

numpy.inner()

numpy.determinant()

numpy.matmul()

numpy.inv()

numpy.solve()

numpy.vdot()

numpy.vdot()函数是两个向量的点积。

  • 如果第一个参数是复数,那么它的共轭复数会用于计算

  • 如果参数是多维数组,它会被展开。

    import numpy as np
    a=np.array([1,2,3,4])
    b=np.array([1,2,3,4])
    ans=np.vdot(a,b)#11+22+33+44
    print(ans)

    30

    a=np.array(([[1,2],[3,4]]))
    b=np.array(([[1,2],[3,4]]))
    ans=np.vdot(a,b)# a展开为[1,2,3,4],b展开为[1,2,3,4]
    print(ans)

    30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值