笔记#2021-6-18#pytorch

MNIST Handwritten Digit Recognition in PyTorch传送门

torch.backends.cudnn.enabled = False

cuDNN非确定性算法

torch.backends.cudnn.enabled = False       #禁用
torch.backends.cudnn.enabled = True        #打开

若将其打开,那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题

一般来讲,应该遵循以下准则:

  1. 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;
  2. 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
    所以我们经常看见在代码开始出两者同时设置:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True

torch.manual_seed(int seed)

torch.manual_seed(1)
torch.rand(1,2)

无论执行多少次,(注意是一起执行这两行代码),输出的结果都是一样的
若去掉 torch.manual_seed(1) 直接torch.rand(1,2) 则生成的结果是不一样的

参数 seed 的理解
可以理解为一个rand 的index,index相同,则rand的结果是相同的

torch.manual_seed(2)
print(torch.rand(2))

torch.manual_seed(1)
print(torch.rand(2))

torch.manual_seed(2)
print(torch.rand(2))

torch.manual_seed(1)
print(torch.rand(2))

输出结果:

tensor([0.6147, 0.3810])
tensor([0.7576, 0.2793])
tensor([0.6147, 0.3810])
tensor([0.7576, 0.2793])

理解: seed=1,rand产生的是 tensor([0.7576, 0.2793]); seed=2,rand产生的是 tensor([0.6147, 0.3810]);

GPU
torch.cuda.manual_seed(int.seed):为当前GPU设置随机种子
torch.cuda.manual_seed_all(int.seed):为所有的GPU设置种子

torchvision.datasets.MNIST

class torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  1. root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。(数据下在存放的完整地址)
  2. train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
  3. download(bool, 可选)– 如果设置为True, 从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
  4. transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
  5. target_transform (可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。

torchvision.transforms.Compose()

torchvision.transforms 参数解读/中文使用手册
其作用是将多个变换方式结合在一起:

transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                               ])

class torchvision.transforms.Normalize(mean,std)
用均值和标准差对张量图像进行标准化处理。给定n通道的均值(M1, … , Mn) 和标准差(S1, … ,Sn), 这个变化将会归一化根据均值和标准差归一化每个通道值。例如,input[channel] = (input[channel]-mean[channel])/std(channel)
参数:

  1. mean (squence) ——每个通道的均值
  2. std (sequence) —— 每个通道的标准差

class torchvision.transforms.ToTensor()
将PIL图片或者numpy.ndarray转成Tensor类型的
将PIL图片或者numpy.ndarray(HxWxC) (范围在0-255) 转成torch.FloatTensor (CxHxW) (范围为0.0-1.0)

torch.utils.data.DataLoader()

train_loader = torch.utils.data.DataLoader(
  torchvision.datasets.MNIST('/files/', train=True, download=True,
                             transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize(
                                 (0.1307,), (0.3081,))
                             ])),
  batch_size=batch_size_train, shuffle=True)

class torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False)
因为本项目字涉及到其中的三个参数所以只介绍datasetbatch_sizeshuffle
若想了解更多请参考官网链接

  1. dataset (Dataset) – 要从中加载数据的数据集
  2. batch_size (int, 可选)– 每批装载多少样本(默认: 1).
  3. shuffle (bool, 可选) – 设置True 在每次迭代中打乱顺序 (默认: False).

enumerate()

enumerate(sequence, [start=0])
函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。

  1. sequence – 一个序列、迭代器或其他支持迭代对象。
  2. start – 下标起始位置。

举例

>>>seasons = ['Spring', 'Summer', 'Fall', 'Winter']

>>> list(enumerate(seasons))
[(0, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

>>> list(enumerate(seasons, start=1))       # 下标从 1 开始
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

next()

next(iterable, [default])

  1. iterable – 可迭代对象。
  2. default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

可迭代的对象(可以用for循环的对象)Iterable:
一类:list,tuple,dict,set,str
二类:generator,包含生成器和带yield的generatoe function

而生成器不但可以作用于for,还可以被next()函数不断调用并返回下一个值,可以被next()函数不断返回下一个值的对象称为迭代器:Iterator

生成器都是Iterator对象,但list,dict,str是Iterable,但不是Iterator,要把list,dict,str等Iterable转换为Iterator可以使用iter()函数

figure()

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)

  1. num:图像编号或名称,数字为编号 ,字符串为名称
  2. figsize:指定figure的宽和高,单位为英寸;
  3. dpi:参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 1英寸等于2.5cm,A4纸是 21*30cm的纸张
  4. facecolor:背景颜色
  5. edgecolor:边框颜色
  6. frameon:是否显示边框

matplotlib.pyplot.imshow()

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, *, filternorm=True, filterrad=4.0, resample=None, url=None, data=None, **kwargs)

  1. X:array_like对象/数列类对象,shape(n,m) 或者(n,m,3)或者(n,m,4)
    把X代表的图片显示在当前坐标轴中。X可以是数列类格式、或者PIL图片。如果X是数列类对象,它可以有如下3种情况&类型:
    MN - 用来作图的数列值:float类型 / INT类型
    M
    N3 - RGB数列:float类型 / unit8类型
    M
    N4 - RGBA数列:float类型 / unit8类型
    M
    N3和MN4的float数列,取值范围限定为[0.0, 1.0]。MN类数列是基于norm(采用标量对映射到标量方法作图)和cmap(将标准化标量映射为颜色)。

  2. interplotation:默认"None",可用字符串类型命令设定

    可设定的字符串命令为:‘none’,‘nearest’,‘bilinear’,‘bicubic’,‘spline16’, ‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’, ‘kaiser’,‘quadric’,‘catrom’,‘gaussian’,‘bessel’,‘mitchell’, ‘sinc’,'lanczos
    如果"None",默认rc image.interpolation。
    如果是"none",则在Agg,ps和pdf后端不进行插值。其他后端将会落到“最近”。

  3. cmap:默认"None",可设为 “colormap"

    如果是“None”,默认rc值符合 image.cmap 。如果X是3-D,则cmap会被忽略,而采用 具体的RGB(A)值。

nn.Conv2d()

nn.Conv2d(in_channels, out_channels, kernel_size)

  1. in_channels—这个很好理解,就是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。
  2. out_channels—也很好理解,即期望的四维输出张量的channels数
  3. kernel_size—卷积核的大小,一般我们会使用5x5、3x3这种左右两个数相同的卷积核,因此这种情况只需要写kernel_size = 5这样的就行了。如果左右两个数不同,比如3x5的卷积核,那么写作kernel_size = (3, 5),注意需要写一个tuple,而不能写一个列表(list)。

Dropout2d()

防止过拟合
Dropout的过程

  1. 按照概率p,对每个输入channel进行伯努利采样,随机采样到的channel置为0,输出
  2. 将1.的输出结果乘以1/(1-p)就是做了dropout的结果

nn.Linear()

PyTorch的nn.Linear()是用于设置网络中的全连接层的,需要注意的是全连接层的输入输出都是二维张量,一般形状为[batch_size, size]不同于卷积层要求输入输出是四维张量
class torch.nn.Linear(in_features, out_features, bias=True)

  1. in_features—指的是输入的二维张量的大小,即输入的[batch_size, size]中的size
  2. out_features—指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接层的神经元个数。从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。
  3. bias=True—如果设置为False,层将不会学习附加偏差。默认值为True
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
pytorch-09.ipynb是一个使用PyTorch库进行深度学习实践的笔记本文件。PyTorch是一个基于Python的深度学习框架,它提供了方便简洁的API接口,使得深度学习模型的构建和训练变得更加容易。 在这个笔记本文件中,我推测可能包括以下内容: 1. 张量的基本概念和操作:张量是PyTorch中最基本的数据类型,类似于Numpy中的多维数组。这个笔记本可能会介绍如何创建和操作张量,以及张量在深度学习中的应用。 2. 自动梯度计算:PyTorch通过自动梯度计算(Autograd)模块实现了计算图和反向传播。这个笔记本可能会介绍如何使用PyTorch的autograd模块来计算张量的导数,并利用导数进行模型参数的更新。 3. 模型构建和训练:深度学习模型的构建和训练是PyTorch的核心功能。这个笔记本可能会介绍如何使用PyTorch构建各种类型的神经网络模型(如全连接网络、卷积神经网络和循环神经网络)并进行训练。 4. 数据加载和预处理:在深度学习中,数据的加载和预处理是非常重要的一步。这个笔记本可能会介绍如何使用PyTorch的数据加载器和数据转换工具进行数据的加载和处理。 5. 模型性能评估和调优:在实际应用中,评估模型性能和进行调优是不可或缺的步骤。这个笔记本可能会介绍如何使用PyTorch进行模型性能的评估,并介绍一些常见的调优方法,如学习率调整、正则化和dropout等。 总之,这个笔记本文件可能会提供一些关于PyTorch库的基本操作和深度学习模型构建的实践指南,帮助读者更好地理解和应用PyTorch进行深度学习任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值