有序表查找_斐波那契(Fibonacci)查找


斐波那契查找算法的的核心在于:

1)当key = a[mid]时,查找成功;

2)当key < a[mid]时,新范围是第low个到第mid-1个,此时范围个数为F[k-1]-1个;

3)当key > a[mid]时,新范围是第m+1个到第high个,此时范围个数为F[k-2]-1个。

时间复杂度是O(logn),但就平均性能来说,斐波那契查找要优于折半查找。可惜如果是最坏情况,比如下例中key = 1,那么始终都处于左侧长半区在查找,则查找效率要低于折半查找。

代码如下:

#include <iostream>
using namespace std;

/************************************************************************/
/* 斐波那契查找                                                         */
/************************************************************************/
int F[100]; /* 斐波那契数列 */
int Fibonacci_Search(int *a,int n,int key)
{
	int low,high,mid,i,k=0;
	low=1;	/* 定义最低下标为记录首位 */
	high=n;	/* 定义最高下标为记录末位 */
	while(n>F[k]-1)
		k++;
	for (i=n;i<F[k]-1;i++)
		a[i]=a[n];
	
	while(low<=high)
	{
		mid=low+F[k-1]-1;
		if (key<a[mid])
		{
			high=mid-1;		
			k=k-1;
		}
		else if (key>a[mid])
		{
			low=mid+1;		
			k=k-2;
		}
		else
		{
			if (mid<=n)
				return mid;		/* 若相等则说明mid即为查找到的位置 */
			else 
				return n;
		}
		
	}
	return 0;
}
int main()
{
	int a[20] = {0,1,16,24,35,47,59,62,73,88,99};
	F[0]=0;
	F[1]=1;
	for(int i = 2;i < 100;i++)  
	{ 
		F[i] = F[i-1] + F[i-2];  
	} 
	cout<<Fibonacci_Search(a,10,62)<<endl;//如果返回-1,则查找失败
	getchar();
	return 0;
}

结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值