Milvus Lite、Gemini 1.5、BGE M3 和 LangChain 简介
我们即将构建的多模态 RAG(Retrieval-Augmented Generation)系统将使用到以下 4 个部分:Milvus 向量数据库、Gemini 1.5 大语言模型、BGE M3 Embedding 模型和 LangChain 框架。
Milvus Lite
Milvus 是一款开源向量数据库,能够高效存储十亿规模的向量数据,并在 RAG 的检索阶段执行高效的向量搜索。Milvus 提供多种安装方式,但对于初学者来说,最简单的方式是使用 Milvus Lite。如果您是初学者并且只想简单尝试 Milvus,那么我们推荐您使用 Milvus Lite。只需一个简单的命令,您就可以立即开始使用 Milvus 存储至高 1 百万个向量。以下是安装 Milvus Lite 的命令:
pip install pymilvus
然而,如果您需要扩展您的应用,并最终部署到生产环境,我们推荐您在 Docker 容器或 Kubernetes 上部署 Milvus。更多内容,请参考 Milvus 官方安装指南 (https://milvus.io/docs/install-overview.md)。
Gemini 1.5
Gemini 1.5 是由 Google DeepMind 开发的一款多模态大语言模型(LLM),基于此前的 Gemini 1.0 模型进行了改进。与 Gemini 1.0 相比,这个模型在数学、编程、多语言能力以及理解图像、音频和视频方面都有显著提升。Gemini 1.5 有两个独特的特点:模型架构和